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Abstract
There is a tremendous need to develop more accurate, large-scale, efficient, and

timely methods for mapping intertidal shellfish resources and adjacent fringing marsh
areas as urban pressures are continue to exert pressures on estuarine habitat.  A majority
of all baseline shellfish bed maps are currently produced through ground surveys and
manual aerial photograph interpretation, a tedious process which is time-consuming and
prone to human inconsistencies.  The first objective of this research was to investigate
and document the spatio-temporal variability of shellfish spectral properties by collecting
and compiling monthly in situ spectral samples of oyster strata over the course of a year.
The development of an oyster spectral library using consistent in situ spectroradiometer
sampling over the course of 12 months is a significant contribution to the shellfish
management community. These data are being used for identifying the optimal spectral
and spatial characteristics that are required to map the distribution and condition of
intertidal shellfish resources. The second objective was to assimilate the findings of the
oyster spectral library in order to test and evaluate several new digital image processing
methods that exploit the information in various remotely sensed data (e.g. hyperspectral
imagery, high spatial resolution imagery, and Light Detection and Ranging (LiDAR).

As demonstrated in this research, scientists can use the spectral variation in
hyperspectral imagery using Mixture Tuned Matched Filtering (MTMF) techniques,
Automated Feature Extraction methods, and LiDAR, to perform a more automated,
accurate, efficient and reliable method for mapping shellfish resources. Results suggest
that the Automated Feature Extraction in conjunction with high spatial resolution
imagery provided the highest accuracy and lowest time and cost expenditures as
compared to spectral mixture analysis.  The utility of a spectral library was shown to have
mixed results.  A high degree of spectral variability was found within the oyster habitat.
Statistical analysis of the in situ data did show that the spectral profiles of triplicates
varied with habitat complexity.  Washed shells did not vary statistically as significantly
as live healthy, vertically standing oysters.

LiDAR elevation data provided very little in the way of classification of oyster
strata or health through the use of surface roughness, but the intensity returns provided a
preliminary methodology for classifying oyster strata and mud surfaces based upon the
last laser pulse returns.  With projected exponential urban growth along our coastal
waters, it is hoped that the mapping techniques developed throughout the course of this
research will provide shellfish resource managers with up-to-date information on the
condition of existing oyster reefs, compare changes from past surveys, and assimilate the
data with other estuarine resource data to predict and manage using restorative science.
The achievement of such mapping techniques will provide a more cost-effective
(eventually), timely, and repeatable method for creating accurate baseline maps that are
less subjective and will benefit the coastal community at national and international levels.

Keywords: Remote sensing, Shellfish mapping, Resource management, Mixture Tuned
Matched Filtering (MTMF), Automated Feature Extraction, Classification and
Regression Tree Analysis, Hyperspectral, LiDAR
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1.  Introduction
Estuaries and their component habitats are recognized as some of the most

productive and important ecosystems with component habitats, providing critical feeding,
spawning, and nursery areas for species that include commercially and ecologically
important finfish, shellfish, and waterfowl, to name a few.  Many organisms found in
estuaries are dependent on one or more specific habitat types (e.g., mud flats, salt
marshes, oyster reefs) that are increasingly threatened as a result of coastal population
expansion and associated industrial, residential, and recreational development/utilization.
Mollusks can have significant impacts on population, community and landscape level
processes, due in large part to their ability to filter large quantities of water (e.g., Newell
2004, Grizzle et al. in prep.) and their ability to generate primary structure. For oysters
and other species that perform these functions, they have been termed “ecosystem
engineers” (e.g., see Jones et al. 1994, 1997, Coen et al. 1999b, Coen and Luckenbach).
Data suggest that development expansion in coastal areas is already negatively impacting
critical estuarine shellfish habitat (see Vernberg et al., 1992, 1999).  This problem is
manifesting itself in the form of increasing shellfish bed harvesting closures, declines in
marsh habitat, runoff from impervious services and impaired functioning due to declining
water quality conditions caused by increasing urban/suburban pressures (e.g., Daugomah
2000, Mallin et al. 2000, Holland et al. 2004, Mallin and Lewitus 2004, Mallin et al.
2004).

Estuaries in the southeastern U.S. are often dissected by shallow, expansive
intertidal areas dominated by shallow tidal creeks fringed by salt marsh, with tides from
1-3 m (e.g., Kneib 1997, Dame et al. 2000, Holland et al. 2004). In recent years, intertidal
estuarine habitats have largely been mapped through the use of remote sensing and
related GIS datasets (Cracknell 1999).  Current intertidal shellfish bed baseline maps
were largely produced through the tedious process of ground surveys and manual aerial
photograph interpretation, which is time-consuming and prone to human inconsistencies
(DNR pub).  With a projected 60% increase within the coastal zone by 2010, it is
imperative that new methods be developed which employ a more automated approach
and are easily transferred in a consistent manner across local, regional and national
levels.  New techniques are required to better understand and map the factors that
enhance the persistence of oyster reefs.  The development of such techniques will
improve our restoration efforts on both a local, regional and national spatial scale.  Rapid
and cost effective methods for measuring and assessing shellfish status and change using
successive surveys will allow resource managers to cover large areas in a rapid
timeframe.  These novel approaches will permit coastal managers to focus restoration and
enhancement efforts in a more cost-effective manner.
1.1 Mapping the Eastern Oyster

The eastern oyster, Crassostrea virginica, forms extensive subtidal and intertidal
reefs that are a dominant feature of many Atlantic and Gulf coast estuaries (e.g., Burrell
1986, 1997, Stanley and Sellers 1986).  Besides the economic reasons for developing
more efficient oyster reef mapping and management methods, these reefs provide
numerous critical ecosystem functions (e.g., Coen et al. 1999b, Coen and Luckenbach
2000).  In South Carolina estuaries, intertidal oyster reefs are often the only “live bottom”
and appear to perform similar functions for fish as sea grasses do elsewhere, providing
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refuge and nursery habitat for adult and juvenile fishes, shrimp and crabs (Coen and
Luckenbach 1999a,b, Williams and Heck 2001, Luckenbach et al. 2005, Coen and
Grizzle 2006; reviewed in Coen et al. 1999a,b).  Previous Sea Grant-funded work has
documented the presence of over 130 species, often reaching densities over 150/m2 (see
Coen et al. 2006, Walters and Coen 2005, Coen et al. in review).  In the Southeast, where
oysters occur primarily in the intertidal zone (Burrell 1986, Coen et al. 1999a, Coen and
Walker 2005), oysters can provide a living bulkhead to reduce shoreline erosion and
protect Spartina saltmarsh (Meyer 1996, 1997; Chose 1999, Coen and Fischer 2002,
Coen and Bolton-Warberg 2005).  As a part of its normal feeding activities, oysters filter
large volumes (up to 50 gallons/ day/oyster) of water, removing both algae that they use
as a food resource and suspended particles.  Filtering by dense populations of oysters can
significantly improve water clarity and remove suspended sediments (e.g., Dame et al.
2001, Nelson et al. 2004, Newell 2004).

There is a tremendous need to develop more accurate and cost-effective large-
scale, methods for mapping intertidal habitats such as oysters and adjacent fringing marsh
areas. As previously mentioned, these areas are highly threatened by significant
development pressures in coastal areas (e.g., Jefferson et al. 1991).  Traditional methods
using ground-referencing and manual aerial photography interpretation are time
consuming and inconsistent.  This research was aimed at developing novel, cost-
effective, and repeatable methods that take advantage of advanced remote sensing
technologies to map and monitor intertidal oysters.  Key temporal hyperspectral
characteristics of oyster reefs were identified using spectral analysis techniques which are
repeatable and less subject to human inconsistencies.  The benefits and utility of high
resolution LiDAR (Light Detection and Ranging) remotely sensed data for identifying
shellfish habitat was also explored.  An important benefit of this approach was the ability
to combine or relate the distribution of different oyster ‘strata’ (i.e. oyster densities and
reef bed quality) developed by SCDNR to other types of remotely sensed data being
developed t for phytoplankton blooms and sediment loads in the water.  While a
significant contribution of this effort was directed towards the remote sensing and image
processing communities, the more significant contribution will be to the shellfish and
coastal management communities.
1.2 Past shellfish mapping research

Traditional methods used for mapping shellfish resources have proved
problematic and challenging for coastal managers.  These methods include time-
consuming GPS and manual field surveys such as were used in SC in the 1980s
(Jefferson et al. 1991), and the use of aerial photography interpretation (e.g., Grizzle
1990, Grizzle et al. 2002).  The problems with these methods include: (a) the occurrence
of water and mud between the observer and the resource; (b) the small dimension of the
object being mapped; (c) changes in the spectral signature of habitat components with
exposure and season (e.g., drying out, rewetting, benthic algal growth and species
composition) and; (d) tidal influences such as varying water depth during imaging.
Given such constraints and limitations, studies of shellfish structure and complexity have
required extensive in situ sampling and evaluation through spatial and temporal sampling.
Cores, profiles, nets, and sampling trays have been the tools of the researcher to obtain
data on settlement patterns, surface roughness, and density (e.g., Commito and
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Rusignuolo 2000; Coen and Luckenbach 2000, Luckenbach et al. 2005, Coen et al.
2006).  In recent years, there have been several attempts to utilize new remote sensing
techniques as an alternative to the expense, time and labor required in past management
and research efforts.  For example, Grizzle et al. (2002), used aerial photos as a general
ground-referencing for to identify highly reflective, light-colored area adjacent to darker-
colored live reefs that were used to detect the appearance of dead oyster reefs in historical
aerials.  Several other remote sensing methods have been employed in subtidal
environments with varying degrees of success, including acoustic mapping, side scan
sonar, and profiling systems (e.g., Powell et al. 1995, Pinn et al. 1998, Wilson et al. 1999,
2000, Smith et al. 2001, Coen and Grizzle 2006, Grizzle et al. in press).  Smith et al.
(2001, 2003) successfully employed an acoustic seabed classification system (ASCS) to
distinguish between substrate types, with emphasis on oyster shell, in submerged areas of
the Chesapeake Bay, TX and LA.  The ASCS functions by emitting a sound wave
through the water column.  Objects on the bottom reflect the sound wave back to the
instrument, which records time and intensity to create an image of the area mapped
(Kracker, 1999).  However, the techniques used in these submerged environments are
poorly suited for mapping the intertidal zone of the turbid southeastern US coastal waters
(but see http://marine.questertangent.com/qtc/pdf/hobcawreport03.pdf Quester Tangent
pdf from workshop we sponsored).

The utility of high-resolution, multi- and hyperspectral imagery for coastal habitat
mapping has been explored to some limited extent in other coastal ecosystems.
Chauvaud et al. (1998) found that multispectral aerial photography at a resolution of 5 m
or greater was effective for mapping and monitoring tropical ecosystems such as coral
reefs.  Tropical environments have the advantage of nearly transparent water for mapping
submerged vegetation and structures.  Even earth materials in subtidal locations, water
transparency was derived as an endmember fraction as a function of depth for coral reef
mapping in the tropics (Peddle, Holden and LeDrew 1995).  In the intertidal zone, reefs
are typically covered at high tide with cloudy, turbid water in depths ranging from a few
centimeters to 2 or 3 meters.  This necessitates image capture at low tide when the reefs
are exposed.  Previous attempts to classify oyster reefs using multispectral imagery have
achieved limited success (Schmidt 2000).  The primary problem was the misclassification
of mud flats as oyster reefs due to the broad spectral bandwidths of the multispectral
sensor. Demonstration oyster mapping projects using high-resolution digital frame
multispectral imagery are currently underway with scientist from NOAA Coastal
Services Center (CSC) and the South Carolina Department of Natural Resources
(SCDNR) (CSC 2003). Hyperspectral remote sensing systems can acquire imagery at
similar spatial resolution but these sensors offer increased spectral resolution that is
necessary to differentiate between mud flats and oyster reefs.  There is tremendous
mapping potential and the authors recommend further research into applications of
hyperspectral remote sensing in other coastal environments, including mangroves and
mudflats.

Another promising remote sensing technology that has been recently applied to
coastal mapping is LiDAR.  When acquired under certain conditions, LiDAR has the
ability to distinguish emergent features at spatial resolutions of approximately 10-15 cm.
Most LiDAR applications have focused on terrestrial environments, particularly for
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topographic mapping and forestry.  However, the extreme precision of LiDAR for three-
dimensional mapping is well-suited for many environments (Lefsky et al. 2002).
Techniques for mapping submerged and intertidal resources vary in levels of accuracy,
cost, and applicability.  Many of the techniques suited for submerged environments are
not useful in intertidal zones.  This research is the first to evaluate LiDAR remote sensing
of shellfish resources in the intertidal zone.

Shellfish habitats have typically been managed by individual states, each with its own
distributional databases and management policies.  The most information is available for
species such as oysters that have been managed historically as a food resource, but now
also as an ecological resource (e.g., Coen and Luckenbach 2000, Coen and Grizzle 2006).
South Carolina has extensive information on oyster distributions, ranging from surveys
completed in 1890-91 (e.g., Battle 1891) to maps based on recent aerial imagery (e.g.,
CSC 2003, Coen et al. 2005b, Schulte et al. 2005, Smith et al. 2005).  SCDNR completed
a statewide intertidal oyster resource assessment funded by SCDHEC, OCRM from 1980
to 1987, with periodic reassessments through the present day (see Jefferson et al. 1991).
This intertidal oyster survey measured each oyster population using laser or split image
rangefinders to determine a reef’s dimensions.  A GPS or map reading was taken in the
center of each reef, the area digitized and later entered into the SCDNR’s shellfish
management Geographic Information System (GIS).  Ancillary data, including
temperature, salinity, shell matrix depth, reef elevation, adjacent water depth, dead vs.
live oysters, etc. were collected and are currently utilized for management purposes
(Jefferson et al. 1991).  Oyster populations were categorized by characteristic spatial
dispersions (densities) that allowed an estimate of each reefs’ standing stock.

Currently, SCDNR is collaborating with NOAA’s Coastal Services Center and
several contractors to apply earlier developed methods (CSC 2003) using airborne multi-
spectral digital imagery acquired by GeoVantage Inc.’s GeoScanner system.  Photo
Science (the SCDNR contractor) is deriving results including bed location, extent, and
condition of intertidal oyster populations along intertidal areas of the South Carolina
coast.  Field assessments are being conducted in order to ground-truth these results and
assist in development of extraction techniques.  Extensive ground-referencing efforts are
being conducted at or near MLW +2.0 h.  The teams also collect GPS data as transects of
intertidal oyster beds.  Oyster density, reef size (or footprint) and location data are
collected in the field, along with video.  This information is available via the SCDNR’s
GIS Data Clearinghouse and Internet Map Server.

As summarized in Street et al. (2005), for North Carolina, the state’s Shellfish Habitat
and Abundance Mapping program began in 1988 with the creation of detailed bottom
type maps using standard surveys from the South Carolina border through Core Sound,
along the perimeter of Pamlico Sound, and in Croatan/Roanoke sounds (see pp. 203, Map
3.2).  This mapping effort continues, delineating all bottom habitats, including shell
bottom, with samples then collected of molluscan densities differentiating over 24
different bottom types based on combinations of depth, bottom firmness, vegetation
density, and density of surface shells.  They define shell habitat (or shell bottom) as
>30% of bottom with living or dead shells.
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Other states, such as New Hampshire, are mapping and managing shellfish species
including oysters, mussels (Mytilus), and softshell clams (Mya arenaria).  Distributional
data are available for all three species, although historical information before the 1980s is
meager.  Ongoing shellfish mapping programs are research-oriented and include Grizzle
et al. (in press) use of multibeam sonar, underwater videography, and extractive sampling
methods (see Figure 4).  Similar efforts have proven useful with other shellfish species
(e.g., Goshimam and Fujiwara 1994, Powell et al. 1995, Smith et al. 2001, Carbines and
Morrison in press). The utility of recent advances in remote sensing technologies for
mapping intertidal and subtidal shellfish populations is just beginning to become apparent
in the U.S., although they have been used more extensively in Canada and Europe with
Roxanne and Quester-Tangent sonar instrumentation for mapping shellfish (Coen,
Bushek and Grizzle 2004 Sea Grant supported Workshop on Remote Sensing of
Shellfish, Marc Ouellette Fisheries Canada pers. comm.).
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2. Objectives
The purpose of this research was to develop new and innovative shellfish

mapping technologies for coastal resource managers to improve shellfish baseline
mapping and monitoring methods.  The first year objective was to identify the optimal
spectral and spatial characteristics for mapping the distribution and condition of intertidal
shellfish resources.  The development of a shellfish reef spectral library was acquired
monthly through extensive in situ field sampling over the course of twelve months. This
represents a significant contribution to the shellfish management community and will
serve future shellfish mapping efforts.  The spectral library was used to compare the in
situ spectral data with spectral data extracted from the imagery. Comparisons between the
two spectral data sets were done using statistical methods as well as comparing
accuracies of mapping products using remotely sensed techniques.  In addition, the
monthly library of shellfish reef spectral samples permitted the detection of seasonal
changes in the reef habitat in order to determine the best sampling temporal range using
remote sensing technology.  This knowledge is a significant contribution to resource
managers who previously could only guess the optimal season to acquire expensive
remotely sensed imagery.  Results of the first year objectives were used to determine the
optimal spectral and spatial characteristics that are required in order to map the spatial
distribution of shellfish and assessing reef condition.  The second year objective was used
to assess and compare the utility of a wide range of remote sensing and GIS
methodologies to determine the most efficient method for mapping shellfish reefs. These
methods can be used by resource managers to perform more automated, accurate,
efficient and reliable shellfish mapping products.  These methods include investigations
into the utility of various types of remotely sensed data including hyperspectral imagery,
Light Detection and Ranging (LiDAR), and high spatial resolution imagery for more cost
efficient mapping solutions.

Identifying and mapping oyster reefs has been a high-priority issue facing
shellfish resource managers.  There has been a tremendous need to create accurate up-to-
date maps of shellfish habitat as significant declines in the commercially important oyster
have recently been reported.  Oysters not only improve water quality and control
eutrophication, they also serve as excellent places for recreational fishing.  Current
mapping methods using GPS surveys and extensive field surveys are man-power
intensive and limit the ability of an agency to maintain and update oyster maps for large
regional areas.  Using these methods, reefs can only be mapped every 10-15 years, which
is not adequate for identifying rapid die-offs, monitoring habitat changes, or directing
enhancement/restoration efforts.  The mapping of oyster reefs in a GIS environment
provides resource managers with a means to assimilate and analyze estuarine resource
data in relation to projected or potential environmental impacts (Jefferson, et al. 1991).
The development of a new remote sensing / GIS mapping techniques, that exploit the
unique spectral features found in oyster reefs, will promote the commercialization of
innovative coastal and estuarine management tools and enhance coastal managers’ access
to up-to-date estuarine environmental data and information. The objectives of this project
have been identified and coordinated through active communication with private sector,
and academic and government institutions.  Results of this project have met several
CICEET goals including a) coastal management techniques for mapping oyster reefs that
are integrated with leading GIS software; b) methods for developing oyster reef baseline
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maps which can be used for future change detection studies; c) resource managers that
are trained on the mapping techniques through a sponsored workshop and oral
presentations at conferences; d) manuscripts in refereed journals (in progress); and e)
sponsored graduate student research. The long-term goal is to provide managers with
sufficient information to prevent further ecologically and economically valuable reef
losses, and if appropriate, to restore the damaged reefs. This research has met the
CICEET goals through a collaborative effort of private, government, and academia
entities seeking to establish a timely, cost-effective, and repeatable method of mapping
shellfish resources. Developed methodologies from this research have assisted in
understanding shellfish spectral response dynamics within the natural environment and in
return provide a more scientific-based approach for making critical management
decisions.
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3.0 Methods
3.1 Introduction

This section details the methods used to extract shellfish from multiple sets of
remotely sensed imagery using spectral analysis and automated feature extraction.  The
remotely sensed data platforms vary in spectral and spatial resolutions, from 4 bands of
0.25 x 0.25m resolution GeoVantage imagery to 126 bands 4.0 x 4.0m resolution
HyMAP imagery. The first section describes the study area, including a) locations of the
field sample sites that were used for in situ spectroradiometer sampling; b) pictorial essay
of the sample sites; c) classification of the sample sites using the South Carolina
Department of Natural Resource shellfish classification system; d) establishment of in
situ sampling points; and e) a description of the shellfish sample site data that were
collected.  Several datasets have been made available on-line as a resource for coastal
resource managers. These include a) numerous digital images that were taken at several
sample sites to depict the actual sample sites and associated environmental conditions; b)
detailed documentation and cataloging of post-processing of the spectral files; c) a digital
spectral library of monthly shellfish samples; d) the methods for spectral analysis
mapping of the hyperspectral datasets using the developed in situ spectral library; and e)
all raw data and aggregated spectral data files and associated global position system
(GPS) point files in standard GIS compatible format.

3.2 Study Area
The North Inlet-Winyah Bay National Estuarine Research Reserve (NERR)

covers about 80 km2 of barrier islands, low-lying coastal forests, and intertidal salt marsh
near Georgetown, South Carolina. It is an estuarine environment that is bordered on the
east by the Atlantic Ocean and two rivers on the west-southwest: the Waccamaw and the
Great Pee Dee that feed into Winyah Bay which is south of North Inlet. The 2,630 ha
primary research area includes high salinity Spartina alterniflora marsh and 715 ha of
tidal creeks with an average channel depth 3m, and a seasonal temperature range of 3-33o

C, (Porter, et al.1996). Land cover composition at mean tide is Spartina alterniflora
marsh is 73.0%, tidal creeks 20.6%, oyster reefs 1.0%, and exposed mud flats 5.4%,
(Porter et al. 1996).  There are a total of nine study sites located in two principal areas of
North Inlet: Jones Creek/Bob Creek area and No Man Friend’s Creek. Figure 3.1 shows
an image of North Inlet with an inset image showing the point locations of the sample
sites.  Figure 3.2 is a pictorial essay of digital images showing the general characteristics
of each of the sample sites.  Each sample site was located using a Trimble ProXR GPS
that was corrected using real-time differential correction and then corrected again in the
lab using the Charleston, SC ground receiving station. Each sample site was identified by
a four-foot section of PVC pipe that was hammered into the oyster bank and given a
unique identification code.
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Figure 3.1 - North Inlet Study Area with Sample Site Locations
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Figure 3.2 – North Inlet, South Carolina Sample In situ Sample Sites
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3.3 In situ Spectral Sampling
3.3.1 In situ Spectral Signature Collection and Aggregation
The study sites were selected and delineated for the gathering of spectral

signatures of shellfish in a wide range of environmental conditions.  These conditions
include the: abundance of shellfish, positions (vertical and horizontal), and environmental
state, (wet/dry, various amount of mud, algae, and detritus present).  Site characterization
of the oyster reefs were conducted using definitions from the Shellfish Management
section of the South Carolina Department of Natural Resource’s Intertidal Oyster Survey
Field Data Sheet codes.  The Oyster Survey describes the reef strata with respect to
bushels of live oysters per acre, presence or absence of vertical clusters, proportion of
live oysters to shells and amount of mud present.  Each of the 10 listed strata or
classifications are identified by a letter code.  See Appendix 1 for a complete description
of the Intertidal Oyster Strata descriptions and their letter designations.  Table 3.1 lists the
field study sites that were identified by their strata for spectral observations.
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Table 3.1 - In situ Spectral Sampling Sites
Site Description Notes
JC 1 Jones Creek – “F1” Strata Contains F1 and F strata. Linear feature

along bank of creek with Spartina a. on top
of bank.

JC 2 Jones Creek – “C” Strata Island feature in creek

JC 3 Jones Creek – Washed Shell Little to no live shellfish, all horizontal, some
with inside of shell face up.

Bob
1

Bob Creek – “G” Strata Island feature in creek

Bob
2

Bob Creek – “E” Strata Island feature in creek

Bob
3

Bob Creek – “C” Strata Island feature in creek

Bob
4

Bob Creek – “D” Strata Island feature in creek

NMF
1

No Man’s Friend Creek – “G”
Strata overall

Large island feature with Spartina A. on west
side of island. Also contains “D”, F1”, and

“B” strata

NMF
2

No Man’s Friend Creek – Mud Control for mud endmember. No vegetation
present. Also has enough vertical relief to

obtain semidry and wet mud
spectroradiometer readings.

60
Bass

60 Bass Creek – “E” like strata Shellfish with sand filled interstitial spaces,
tightly packed and completely covering the

substrate.

Each field sampling point was aggregated into like shellfish classes.  For each month, the triplicates for
each sampling point within each shellfish class were averaged to obtain spectral curves for twenty classes.

Within the nine identified sampling locations, there were clusters of shellfish
representative of “relatively” homogenous strata as well as a variety of mixed strata in
and around each sampling locations. Transects were demarcated to represent vertical
relief of the sampling reef from the waters edge, (below mean low tide) to the top of the
oyster bank.  No Man’s Friend 1, Bob Creek 4, and Jones Creek 3 sample points have
GPS point and distance measurement from the reference post to the sample point and
demarcated using lengths of small diameter PVC pipe that was placed into the reef.  Bob
Creek 1 through 3 and Jones Creek 1 and 2, have their sample point distance measured
only relative to the reference post.  This is due to the relatively short distance to the
reference post and a smaller sampling area.  Spectroradiometer readings were taken in
triplicate at the 3, 6, and 9 o’clock position relative to the sample point.  Figure 3.3 shows
the locations of the sample points for each of the sample sites which were color coded to
indicate which group each sample point belonged to in the secondary level of
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aggregation.  In post-processing, the triplicates were normalized to apparent reflectance,
and then averaged to obtain a single spectral curve for each sample point.

Figure 3.3  - Sample Sites North Inlet, South Carolina

Sampling points or clusters were classified according to South Carolina Department of Natural
Resources Field Data codes for Intertidal Oysters.  We recognize there are some ambiguities in the
DNR classification, but the intent is to use the DNR classification as a means to describe and
differentiate between groups of shellfish.

All spectroradiometer measurements were taken using a GER 1500 (Geophysical
& Environmental Research Corp (Millbrook, NY)) held at a stable height of ~ 1.5 meters
above the sample point, (the height of holding the spectroradiometer at chest high, ~6 ft.
tall). This height resulted in an IFOV of 1” x 1”..  The spectroradiometer is calibrated
from 350 nm to 1050 nm which roughly correlates with the long wave ultraviolet to the
near infrared region (Jensen 2000).  There are 512 bands with a spectral resolution of 3
nanometers at Full Width Half Maximum.  The washed shellfish at the Jones Creek #3
site was sampled in dry and wet conditions.  This was to document any changes in the
spectral reflectance due to the presence of water.  Relative terms were used to describe
the wet/dry conditions included; dry (maximum dryness of the tidal cycle), semi-dry
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(more dry than wet), semi-wet (more wet than dry), and wet (wet shellfish and pooling of
water interstitially).  Notes included descriptions of the amount of mud encrusting
(heavy/medium/light/none), and any noted detritus, such as seaweed, leaves, grasses, etc.
All spectroradiometer readings, descriptions, measurements, and records were
documented in a bound field notebook and sample points were digitally photo
documented.  Endmembers of water, mud, vegetated areas such as Spartina alterniflora,
and the concrete pad near Clambank Landing were used as controls.

As illustrated in Figure 3.4, monthly spectroradiometer files were organized
according to strata and environmental condition (wet or dry).  The files were then
converted from an Excel spreadsheet format to ASCII text file for importing into
Research Systems, Inc. (Boulder, CO) The Environment for Visualizing Images (ENVI)
software version 4.1 Spectral Library.  All monthly ASCII exported files for each stratum
were aggregated into a single folder.  At the end of the sampling period, each strata folder
contains all spectroradiometer readings converted to reflectance.  The spectroradiometer
values were then averaged into a single spectral reflectance curve for each stratum.
Appendix II contains sampling dates from June 2002 through July of 2003.

Figure 3.4 - Aggregations of Spectral Files

Primary aggregation was the importation of each spectral file into Microsoft Excel, conversion from
radiance to reflectance, the averaging of the triplicates for an average signature of a particular sample
point, and charting of the individual reflectance and average signatures.  The file structure is by month
and contains raw data, Excel format radiance and reflectance, and averaged triplicates.  Further
aggregation was necessary to have each strata represented and reduce the number of individual spectral
signatures for mapping.

As shown above in Figure 3.3, the individual sample points were further
aggregated by averaging the individual reflectance signatures at monthly intervals.  Since
each sampling point had a spectral reference signature recorded, it was not possible to
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average individual radiance signatures and post-process into reflectance.  Appendix 9.1 at
the end of this document contains a table explaining which individual sample points were
aggregated into secondary groupings.

A description of each sample point, including cluster type and secondary spectral
signature aggregation, are listed in Table 9.1 in the Appendix. This table shows BOB A-
C, aggregated from BOB 1-3 sample sites; and BOB D-G, aggregated from the BOB 4
sample site. Since these sample points are located within the same geographic proximity,
they are differentiated by strata that align with the vertical rise of tide.  Another
aggregation from the averaged triplicates used all twelve months of spectral signatures by
sample site.  This is useful in looking at the annual phenological changes that may occur
within the sample points.  For example, sample point BOB4_12 is characterized by
mostly washed bright shell but, in the winter months, there is a preponderance of marco-
algae growth that obfuscates the washed shell.  Spectral changes can be monitored using
the aggregation of the monthly spectral data acquired on the concrete pad at Clambank.
Figure 3.5 shows these monthly triplicate averaged spectral signatures.   These data were
acquired at precisely the same point on the concrete pad and were used as a de-facto
control, showing subtle variations in the spectral response due to slight surface variations
in the concrete pad.

Figure 3.5 - Concrete Pad Composite at Clambank Site, North Inlet, SC

3.3.2 In situ Photo Documentation and Spectral Library
With each monthly sampling event, photos were collected at each site to

document conditions or anomalies that influence spectral reflection.  Changes in spectral
characteristics were especially evident in the winter months when the presence of macro-
algae growth was most significant.  The on-line photo library is organized by month with
an alternative index that places each photo with a specific sample point or description.  .
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Metadata for the spectral library has been organized in an intuitive order to view
or download monthly spectral signatures as Excel files. Each monthly file contains the
individual and the averaged triplicates in reflectance.  At the root directory, there is a
spectral folder that contains two files. The first file contains the Site Conditions file that
describes the conditions of each sample site as being Wet U (submerged), Wet, Semi-
Wet, Semi-Dry, or Dry. The second readme file contains the spectral metadata in XML
file format.  Currently, the web portal is in a “flat file” configuration allowing a user to
download and view digital images, Excel formatted spectral files, raw spectral files,
metadata, and the data catalogs.  The data is housed at the following URL:
http://carocoops.org/ciceet .  Figure 3.6 graphically represents the schematic for web portal
data delivery.

Figure 3.6 - Meta Data Schematic for Data Query, Retrieval, and Delivery

3.3.3 Statistical Analysis
The statistical analysis of the spectral signatures from the year-long in situ

sampling resulted in the creation of a spectral library and spectral image endmembers that
were derived from the HyMAP hyperspectral imagery.  The HyMAP data were the
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imagery of choice for statistical analysis owing to the greater number of contiguous
bands (126 bands from ~450- 2400 nm) and narrower band widths than the AISA (7
bands from 498 nm – 819 nm).  The pixels that were analyzed corresponded with areas
where the in situ spectral signatures were collected.  Selected spectral signatures
contained in the pixels were analyzed both individually and averaged in order to
represent the aggregated spectral and spatial characteristics of the in situ endmembers.

The statistical analysis addressed three primary questions:
1. With regard to in situ sample points, such as BOB4_1, there were three spectral

readings taken at slightly different points around the sample point.  If the earth
material (shellfish) present within the sample points are considered to be of
similar shellfish strata, how similar or statistically different are the three spectral
readings?  Does the type of oyster strata or material such as mud or the concrete
pad make a statistical difference in the spectral signature of the triplicates?

2. The sample points were aggregated by similar strata in larger areal spectral
representations by averaging the individual spectral reflectance signatures, but
how different were the sample points that were aggregated together, i.e. does the
average of triplicates from BOB4_1 differ from the average of the triplicates from
BOB4_2?

3. With a sampling of pixels from the HyMAP imagery from locations of the in situ
sampling as described above, do the spectral signatures from the HyMAP imagery
differ from the in situ spectral signatures?

The process of selecting image endmembers was performed using the Pixel Purity
Index and the N-Dimensional Visualizer in ENVI. This is a trial and error process that
involves selection and aggregation of individual endmembers.  The criterion for merging
endmembers into “bundles” that represent the spectral variability of the earth material of
interest was performed by implementing the Jeffries-Matusita Transformed Divergence
algorithm.  Transformed Divergence is computed using the mean and covariance matrices
from the imagery and measures the degree of divergence or separability of two classes
(Jensen 2000).  This works well with image-derived endmembers, but this algorithm
cannot be used on in situ endmembers independent of the imagery.  Consequently there is
not parity when comparing image-derived spectra with in situ spectra.  As a compromise,
image-derived endmembers utilized for the Mixture Tuned Matched Filtering (MTMF)
mapping were exported as ASCII text and analyzed using the non-parametric Wilcoxon
Signed-Rank test.

The Wilcoxon Signed-Rank test is the non-parametric version of the paired t-test
that tests whether the median for a data set has a particular value.  Using the two-sided, or
signed rank of the Wilcoxon test, has the ability to test a null hypothesis that the two
variables have equal centers of symmetry.  It does not assume the data distribution is
Gaussian in nature.  The Wilcoxon Signed Rank test was used for the last objective as
described above.

Although ANOVA is usually used with normally distributed data, an ANOVA 2-
Factor analysis is used to test the hypothesis of no difference between triplicates of in situ
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samples taken in three different spots at a single sample point, i.e. BOB4_1 triplicates
(objective one from above).  The ANOVA 2-Factor test was used for the first two
statistical analysis objectives.

Not all sample point triplicates, or all possible combinations of aggregated in situ
data were examined to determine differences or similarities between aggregated in situ or
image endmembers.  Given time and personnel constraints it was decided to use a smaller
sample of data points within the BOB4 sample area, the No Man’s Friend Sample sites
and final image endmembers from the HyMAP imagery.  In comparing the HyMAP
image endmembers with the in situ endmembers, it should be noted that comparisons
were done with in situ data that were convolved to match the HyMAP imagery which
was subsetted to reflect the spectral range of the in situ data.  This aspect is not central to
the purpose and intent of the research, but should be the subject of future research using
an intense and rigorous statistical analysis.

The ANOVA 2-Factor analysis of triplicates found results that were consistent
with the type of material being analyzed.  Triplicates from more homogeneous materials
tended to have less overall variance.  Mud from No Man’s Friend 2, and bright sand from
the beach fronting the ocean, are some of the materials that exhibited the least amount of
overall variance.  Conversely, variance was greatest with materials that exhibited the
greatest heterogeneity such as live, vertical, densely clustered oysters on the west side of
BOB4.  Principally BOB4 sample points 14 through 16 and 19 through 22.  Oyster strata
such as “D”, “B” or “F” stratums had mixed results for variances between triplicates.

Analyzing regions of the electromagnetic spectrum individually (blue, green, red
and shortwave infrared regions) between triplicates, resulted in the smallest variances in
the blue, green and red regions, and the greatest variance was found further out in the
short wave infrared regions.  Analysis of the spectral regions was carried out on sample
points BOB4_1 through BOB4_4, and represents the “D” oyster strata class.  These
findings may not reflect results from more or less homogenous oyster strata.

Using the Wilcoxon test, it was found that the averages of triplicates are
significantly different than the averages from another sample point within the same oyster
strata.  This analysis was performed between BOB4_1 and BOB4_2.  In addition,
averaged image spectral signatures were statistically different than averaged in situ
spectral endmembers for the same area of BOB 4 sample site.

3.4 Mapping In situ and Image Derived Spectral Endmembers

3.4.1 Overview of Methodology
The primary methodology of this research compared image-derived spectral

endmembers with in situ spectral signatures of shellfish strata.  All image datasets were
radiometrically and geometrically corrected to insure accurate GPS location and pixel
registration agreement.  The use of MTMF methods were first used to map shellfish
distributions without the use of in situ referenced spectral endmembers.  All field
collected spectral signatures were first convolved to match the wavelength scale of the
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remotely sensed images and Minimum Noise Factor Transformations (MNFT) were
performed for inclusion in the MTMF mapping.

Figure 3.7 - Schematic of Shellfish Mapping Process

Mapping shellfish resources using in situ derived endmembers first required a
decision regarding the level of aggregation of the in situ spectroradiometer signatures that
would best yield a spectral signature corresponding to the same spectral dimensions
found within the imagery.  Since this represents a very small area of interest, the second
level of aggregation as described above was used as inputs for spectral unmixing.  The
second level of aggregation of the in situ spectral endmembers was aggregated to
represent the same patch type of shellfish aggregation and health.  The in situ spectral
reflectance sampling points that fell within an area of similar shellfish groups ( i.e.
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SCDNR strata class F or F1), were averaged.  These averaged spectral signatures
convolved to match the AISA wavelength (as described above) and a MNFT was applied
to the spectra.  They were then saved as a spectral library within the ENVI software to be
utilized as inputs for mapping using the MTMF methodology.  Figure 3.7 shows the steps
that were followed to process the AISA and HyMAP imagery in order to spatially
distinguish and map the shellfish and mud classes.

The targeted features to be mapped were patch or fringing reef structures. The
first step in processing the hyperspectral data was to eliminate any unwanted earth
materials within the imagery.  This was accomplished by masking out the water and
vegetation pixels.  All shellfish are assumed to be near the waters edge or reposing on top
of a patch reef. The process of masking was carried out by using the 2-dimensional
feature space viewer within ENVI.  The 2-dimensional feature space viewer places the
pixel values of one band on the axis of a scatter plot and another band on the opposite
axis.  Typically, the chosen bands have one band that characterizes the material of
interest, such as a band in the near infrared for vegetation, and the other acts as the
contrasting band.  The resulting “shape” of the data cloud is then density sliced to show
areas of denser pixels.  These areas represent features or materials within the imagery.
When selected, the pixels are colored within the scatter-plot and appear within the
imagery as colored pixels.  In this way materials of interest within a scene are selected
and placed into a class.  Once all the pixels of unwanted materials are completed, a
separate band of the imagery is derived and saved as a file.

The next treatment is to reduce the spectral dimensionality of the imagery.
Hyperspectral imagery is usually defined as having many contiguous and discrete
spectral bands (Jensen 2001).  Many of these bands contain redundant information and
the MNFT is designed to eliminate redundancy and segregate any noise in the image
(Boardman and Kruse 1994).  This is a process that uses two cascaded Principal
Component transformations.  The first Principal Component transformation is based upon
the estimated noise covariance matrix, which then decorrelates and scales the noise
within the data. This results in the elimination of band-to-band correlations.  The second
stage takes the noise-whitened data and performs basic Principal Component
transformation.  The associated images (often called ‘eigenimages’) and the eigenvalues
(or eigenvectors) are used for further spectral processing.  There is usually a parsing of
the images and statistics into two groups, including a) those with the highest eigenvalues
and coherent eigenimages; and b) those composed of the lower eigenvalues (with near-
unity values) and eigenimages that are noise-dominated.  By selecting the eigenimages
that have the highest eigenvalues (and thus the most variance), the image dimensionality
has been reduced to the bands with the most information, which are used for further
processing.

The third treatment relates to the input of either in situ endmembers that have also
been transformed via the above process, or endmembers of interest derived from the
imagery through a process known as the Pixel Purity Index (PPI).  The Pixel Purity Index
is used to find the most spectrally pure pixels or extreme pixels.  They are extreme in the
sense that they are on the furthest edges of the pixel data cloud.  The PPI is computed by



25

repeatedly projecting n-dimensional scatter plots onto a random unit vector (ENVI User’s
Guide 2005).  Pixels at the end of the unit vector are counted as extreme and indexed as
to the number of times they are marked as extreme.  The output is a single band image
with pixel brightness denoted as the count or number of times it was marked as extreme.
Parameters the user can set are the threshold factor setting that determines the threshold
for extreme pixels.  A threshold factor setting of 5 marks all pixels at the end of a vector
extreme that are within five digital numbers (high and low) of the extreme pixels as
extreme.  The higher the setting, the more pixels will be counted as extreme but are less
likely to be spectrally pure.  The other parameter that is set is the number of iterations
that the algorithm will run.  To know when all extreme pixels have been found and
marked, a graph is displayed showing the number of iterations (x-axis) and the number of
pixels marked as extreme (y-axis).  When the curve flattens out at the top for a number of
iterations then it is safe to assume that most of the significant extreme pixels have been
marked and indexed.

If in situ endmembers are to be used to map an earth material within an image
then the pixel purity index is not needed.  To use in situ endmembers they must be in the
same MNFT space as the image and placed into the ENVI spectral library for use in the
MTMF algorithm.

The next treatment is the visualization of the PPI in n-dimensional space.  This
allows the user to view and refine the number of endmembers in multiple dimensions of
space to visualize the PPI data cloud from as many different angles as necessary. This is
useful for selecting the most spectrally pure endmembers.  The user then has the options
of exporting the endmembers to view the pixels within the image in geographic space and
saving the bundles or collections of endmembers that represent a single class of earth
material.  Endmembers that are exported for viewing within the imagery are treated as
ROI’s (regions of interest) which can then be tested statistically using the Jeffries-
Matusita Transformed Divergence test for endmember separability.  Endmembers that are
statistically similar can then be merged together into a single class.  The selection and
refinement of endmembers presents one of the most subjective portions of spectral
analysis.  The inclusion or exclusion of endmembers within a class is most problematical
when trying to gather endmembers that represent the spectral variability of the earth
material within the image.

The last treatment is the mapping of the endmembers using one of the available
mapping algorithms.  The two algorithms that were considered are Linear Spectral
Unmixing and Mixture Tuned Matched Filtering (MTMF).  MTMF was chosen over
Linear Spectral Unmixing because in Linear Spectral Unmixing, all endmembers
contained within the image must be derived.  With both Linear Spectral Unmixing and
MTMF, there is an inherent limitation in the number of endmembers that can be mapped.
There can only be n-1 endmembers mapped, where n is the number of eigenimages used
in the analysis.  A limitation of the method becomes apparent when the image may
contain more endmembers than there are available eigenimages.  Since the object of the
research was to map shellfish and not water or vegetation, it makes sense to mask these
elements and not include them in the analysis.  Additionally, when the MNFT is



26

performed on the image, the vegetation and water will usually encompass the majority of
the variance within the image, and by comparison, the variances between mud and
shellfish are much smaller.  Thus when the eigenvalues are calculated, the higher values
will be for the water and vegetation and the smaller eigenvalues relegated to mud and
shellfish. These smaller eigenvalues may be lost within the noise dominated (near unity
variance) eigenimages.  MTMF is also called partial-unmixing because it considers only
the endmembers of interest, while suppressing the remaining spectral signatures as
background noise.

The results from MTMF include two gray-scaled images for each mapped
endmember.  The first is the MTMF Score image that shows the relative degree of match
to the reference endmember scored on a scale of 0-1, with 1 being a perfect match.    It is
common to stretch the values in the right hand side of the histogram from just above zero
to one to show pixels that are mapped correctly.  The second gray-scaled image is the
infeasibility image that shows values in noise-sigma units to indicate the feasibility result.
Figure 3.8 shows a diagram of how noise-sigma units vary in digital number scale with
matched filter values” (RSI ENVI 2004).

Figure 3.8. - Mixture Tuned Matched Filtering (MTMF) Methodology

Pixels that are correctly mapped will have a high MTMF value and a low
infeasibility value.  Pixels that have a high MTMF value and a high infeasibility value,
are “false positive”.  To refine mapped endmembers and correctly identify mapped
pixels, the two-dimensional viewer is used to show the MTMF score on one axis and the
infeasibility scores on the other.  Pixels that are identified as correctly mapped can be
exported as ROIs and treated as inputs into additional rounds of mapping.
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3.4.2 AISA Imagery
The first of two hyperspectral remote sensing data that will be discussed is the

Airborne Imaging Spectrometer for Applications (AISA) sensor (Specim Corporation)
that was acquired onboard an aircraft managed by the University of Nebraska's Center for
Advanced Land Management Information Technologies (CALMIT) remote sensing
center. AISA is a push-broom imaging spectrometer with spectral and spatial resolutions
that are pre-determined according to research needs. The AISA imagery acquired for this
research has a spectral resolution of seven bands within a range of 498 nm – 819 nm.
The spatial resolution is 0.5 x 0.5m which is adequate for visually discerning shellfish
aggregates on a patch reef but is less adequate for discerning fringing reef structures.  The
AISA Plus sensor that was used for the North Inlet-Winyah Bay NERR overflight has
seven bands between 498 and 819 nanometers (~6 nm wide) and a spatial resolution of
0.5 x 0.5 m.  Spectral analysis was done using the photogrammetric and remote sensing
software, The Environment for Visualizing Images (ENVI) version 3.5, SP1 and 4.1, by
Research Systems Inc. (Boulder, CO).

Before analysis of the imagery could be initiated, a mask of the study area was
constructed.  Figure 3.9 shows the AISA image of the BOB4 study site showing bands 6,
4, and 2 (RGB).  This study site was selected due to its large patch reef with a variety of
shellfish strata types present both on the reef and on patch reefs surrounding the study
site.  The mask is used to negate water and vegetation pixels for the MNFT and
subsequent analysis.  Using the 2-dimensional feature space viewer in ENVI, clusters of
water and vegetation were classified and used in construction of the mask.  Pixels not
classified using the above method were hand-selected and classed. Figure 3.10 shows the
mask that was constructed and utilized for the MNFT.

Figure 3.9 - AISA Flight Lines and Image Subset in North Inlet, South Carolina
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Figure 3.10 – AISA image Study Site and Mask indicating vegetation, water, and sunglint/shadow.

The mask was constructed using the feature space viewer within ENVI where
larger groups of dense pixels or classes of pixels can be isolated and marked for masking
purposes.  Figure 3.10 shows the original AISA image and the three different classes of
pixels that were isolated: a) vegetation; b) water; and c) sun glint and shadow.  The sun
glint and shadow is an artifact within the data and not representative of the earth
materials typically found in these areas.  This issue is explored in more detail in the
Discussion section of this report.

3.4.3 HyMAP Imagery Spectral Mapping
The HyMAP data set required no instrument radiometric correction as evidenced

in a Fast Forward Fourier Transform performed in ENVI.  Atmospheric correction of the
HyMAP data set was accomplished using the radiative transfer model algorithm
Atmospheric Correction Now (ACORN) prior to spectral analysis.  Prior to spectral
analysis, all derived images were geometrically corrected using the georeference input
geometry files that are supplied in the HyMAP dataset.  Using the Input Geometry file
(IGM) that is supplied with the HyMAP Dataset, a super Geographic Look-up Table
(GLT) is derived.  The IGM file contains the geolocation information for each original
raw pixel.  The derived images are then georeferenced using the super Geographic Look-
up Table.  A HyMAP image that is not spectrally unmixed will be geometrically
corrected and the two flight lines can be mosaiced to produce a geometrically corrected
reference image. This image can then be used for image-to-image geometric correction.

The HyMAP sample site around the BOB4 sample site did not capture the same
area as the AISA image due to the spatial arrangement of the flight lines.  The HyMAP
Region of Interest (ROI) was spatially subset from the larger HyMAP flight line.  The
resulting HyMAP image subset dimensions were 258 columns by 189 rows.  HyMAP has
126 bands covering the spectral range from 452.9nm to 2482.2 nm, effectively covering
from the visible (VIS) to the short wave infrared (SWIR) regions of the electromagnetic
spectrum.  The spatial subset of the HyMAP image was then spectrally subset into two
ROIs to ease computational loads and isolate more nuanced differences in spectral
responses.  Subset 1 (ROI_1_Bands2_44) and subset 2 (ROI_1_Bands45_126) include
452.9nm to 1078.8nm and 1.093.8nm to 248.2nm respectively.  All bands are used in the
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analysis with the exception of a few water absorption bands that occur at bands 63-65
(1.4044 – 1.4328 nm), 94-97 (1.8034-1.9877 nm), and band 126 (2.4822 nm) due to
image cohesion.

Similar to the AISA region of interest, a mask was constructed of the water and
vegetation using the 2-dimensional feature space viewer.  Figure 3.11 shows the
georectified HyMAP flight lines within North Inlet and Figure 3.12 depicts a masked
subset of the HyMAP imagery. The masked subset was the same mask applied to the both
the two spectral subsets, ROI_1_Bands2_44 and ROI_1_Bands45_126.

Figure 3.11 - HyMAP Remotely Sensed Imagery of North Inlet, SC

Both flight lines were atmospherically corrected using the ACORN (Atmospheric
Correction Now) algorithm and georectified using the GLT (Geographic Look-Up
Table) using the nearest neighbor approach that preserves the original pixel
location.  No color balancing was performed on the imagery or histogram



30

normalization procedures to maintain the integrity of the digital number (DN)
values.
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Figure 3.12 - HyMAP BOB4 Study Area and Mask image

The HyMAP imagery was initially subset into two areas for ease of computation
and to isolate any smaller variances in the mid-infrared region that would not be apparent
if the visible region was analyzed in the same subset.  An additional consideration was
the subset of bands 2-44, which corresponded to the same spectral range as the hand-held
GER field spectroradiometer.  In order to map in situ derived endmembers, it was
necessary that the subset matched the same spectral range as the in situ endmembers.
Additionally, the in situ spectral library endmember were then convolved to match the
spectral range of the HyMAP imagery and a MNFT was performed for inclusion in
mapping with the in situ endmember.

3.5 Mapping Using Visual Learning System’s Feature Analyst®
Feature Analyst (Visual Learning Systems, Inc. Missoula, MT), is a GIS-based,

machine-learning system which was designed to improve poor classification accuracy
often associated with high-resolution imagery.  One of the premises behind Feature
Analyst is the ability to reach out to GIS users in a timely and cost effective manner
(Opitz 1999). The software provides a paradigm shift to automated feature extraction
since it: (a) utilizes spectral, spatial, temporal, and ancillary information to model the
feature extraction process, (b) provides the ability to remove clutter, (c) incorporates
advanced machine learning techniques to provide unparalleled levels of accuracy, and (d)
provides an exceedingly simple interface for feature extraction (O’Brien 2002).  The
benefits of using this software include automation (reducing labor costs of updating GIS
databases), improved accuracy (compared to hand-digitizing), simplicity (user-friendly
and easy-to-use), and innovation in the use of spatial context, clutter removal, and
intelligent agent.

Feature Analyst is similar to a standard supervised classification in that the users
supply training sites for each feature of interest.  The difference is that along with
collecting training sites with a wide array of spectral signature for each class, the user
must takes care that the training sites represent examples of the class’ shape. In short, the
analyst hand digitizes representative samples of the feature target, allows the software to
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search for like features, and then interactively “teaches” the system which resulting
polygons correctly capture the desired feature and which do not (NOAA 2003). The
software uses a hierarchical approach that iteratively allows the analyst to refine the
classification. After an initial classification, Feature Analyst allows the user a chance to
look at the new shapefiles and define them as “correct”, “incorrect” or “missed”.
Running a series of iterations whereby a pixel value is assigned to a class, the user can
define the level of correct results for each polygon. The workflow used in Feature
Analyst is shown in Figure 3.13.

An important variable to consider when using Feature Analyst is computer
processing speed. Each iteration may take considerable time (+3 hours, depending on the
size of the input data), but usually two to three passes through the image is enough to
come up with a final classification.  The software also includes a contextual classifier,
allowing the user to input a pattern that captures the spatial structure of the feature that is
to be extracted.  For example, a star pattern might best represent a tree stand.  Although
this is a useful feature of Feature Analyst, it can be perfected only with trial and error.
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Figure 3.13 - Work flow used in Feature Analyst which includes the creation of training sites, preparing the
input layers, setting up the learning parameters, and refining the and combining features.
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3.6 LiDAR Data
LiDAR data were acquired by Airborne 1 Corporation (Los Angeles, CA) on

January 16th, 2003 in the North Inlet study area.  Two low-altitude flight line swaths
were acquired at a nominal posting of 0.25 meters.  Figure 3.14 shows the acquired flight
swaths superimposed over the 1990 ADAR imagery.  A more detailed view of the No
Man’s Friend sample site is shown in Figure 3.15 and shows the 10th LiDAR tile from the
extracted files which was converted to a TIN and superimposed over the 1999 ADAR
imagery.  Due to cost constraints and the very low post spacing of the LiDAR system that
was required, the data collection mission was strategically designed to incorporate as
many of the field sampling sites as possible (Figure 3.15).  One of the research objectives
was an attempt to incorporate LiDAR-derived elevation and laser return intensity values
into the shellfish classification process.  Both Feature Analyst and the SEE5 algorithm
within the Classification and Regression Tree (CART) made for ERDAS Imagine
software were used to investigate the utility of high-resolution LiDAR for classifying
shellfish resources.

Figure 3.14 - LiDAR Flightlines in North Inlet, SC
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Figure 3.15 - LiDAR Tile 10 Converted to TIN

This Figure shows good elevation features but the imagery was acquired approximately 60 meters 
north of the No Man’s Friend 1 sample site.

Data received from Airborne 1 included ten ASCII files for each of five
categories: a) bald earth; b) extracted features; c) first pulse; d) last pulse; and e) model
key points.  Each category measured both elevation and intensity of the returning laser
pulse.  Both the LiDAR-derived elevation and intensity were evaluated as potential
surrogates for classifying or discerning “health” of the shellfish reefs.  The utility of
elevation is first described, followed by a discussion on the results of the intensity value
mapping.

A ‘bald earth’ elevation model constitutes LiDAR points that represent terrain
topography without the influence of trees, buildings, or artifacts that do not represent the
natural topography.  This product is created by statistically culling LiDAR points that are
modeled as having returned to the system before they reached the ground. Oftentimes,
this algorithm and the process by which they derive the bald earth, is proprietary.  The
extracted features folder typically has the terrain topography as well as the natural and
anthropogenic features mapped by the first returns of the system.  Such features at North
Inlet include trees, buildings, sand/mud bars, streams and shrub tussocks.  Since North
Inlet is predominately a natural estuarine ecosystem, the difference between the extracted
features and bare earth is nominal.  Within a natural setting, single LiDAR laser pulses
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have the potential to create multiple returns as light is scattered from objects such as trees
or buildings.  When these light pulses are returned, they are classified as being either the
first or last return.  Since Airborne 1’s bald earth algorithm is proprietary, it is assumed
that the first of the last returns were statistically extracted for the calculation of the ‘bald
earth’ model.

Figure 3.16 - TINs of First Pulse and Second Pulse with Statistics

The first returns histogram reveals a highly skewed and kurtosis in the data.
Examining the TINs (Triangulated Irregular Network) of the first and last returns, there is
a greater level of detail in the last returns than in the first returns. This is most likely due
to the skewness of the data in the last returns.  Figure 3.16 demonstrates this point by
showing the corresponding area of BOB 4 with the first and last LiDAR returns which
have been converted to a TIN.  Intensity of LiDAR data is not normally used due to
calibration issues of the laser.  In practice, calibration is usually accomplished by flying
the targeted area first, then calibrating the laser intensity to the range of values from the
initial overpass.  Problems with comparing different areas arise due to the inability of not
being able to compare different over-flights.  There is some utility when examining the
relative intensities of the returning laser pulses.  Due to data skewness, the data were log
transformed to approximate a normal distribution.

Rather than transforming the larger scene for patch reef delineation, these reefs
were manually digitized using the 1999 ADAR imagery. These areas were pre-selected
based on field surveys and consisted of mostly shellfish, part shellfish / mud, and mud
reefs.   The LiDAR point files were then subset from the digitized study areas to produce
a file of LiDAR points representing the last returns that contained elevation and intensity
values.  These intensity values were then log transformed and converted into a continuous
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raster surface via interpolation using both Kriging and radial basis function algorithms.
As previously mentioned, a Log transformation was done on the data due to the high
level of data skewness, and to approximate a more normal distribution of the data.
Kriging was used because it represents a more robust method of deterministic
interpolation than the more popular Inverse Distance Weighed interpolation method.
Deterministic interpolation relies on the values of the points around it to determine the
value of a central point and the further away from this point, the less “weight” is assigned
to distant points.  A criticism of this approach is in establishing what the appropriate
weights should be. When using Kriging, the weights are assigned from the
semivariogram which is a statistical relationship based on autocorrelation.  The Radial
Basis Function is an exact interpolator and does not use a weighting scheme.  The
methodology used in the Radial Basis Function uses splines that are fitted through each
point (ESRI 2005).

Several patch reefs were identified at sample site BOB4, and were used for
investigating the utility of LiDAR intensity data based on a computed raster continuous
surface derived using the Radial Basis Function and Kriging.  These classified structures
were then used as inputs into the SEE5 Classification and Regression Tree Analysis that
is implemented through the Leica Geosystems ERDAS Imagine, version 8.7.
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4. Results
4.1 Introduction

The results presented in this section first show the most recent effort of mapping
using the 2-dimensional scatter plot to review and select endmembers.  The second effort
involved using the last two mapping trials to a) illustrate the technique of using the
scatter-plot to isolate and refine endmember bundles; and b) demonstrate changes in the
results showing the before and after effect of using this technique.  This section presents
the results of the in situ spectral libraries that were collected and constructed through the
course of a year and applied to the AISA and HyMAP imagery.  The principal study sites
used to map the in situ and image derived endmembers were BOB4, No Man’s Friend 1
and No Man’s Friend 2 (mud) field sampling sites.  The process of deriving the spectral
shellfish endmembers from the AISA and HyMAP data sets are shown and the results are
then applied to mapping the shellfish distributions from the study sites in both the AISA
and HyMAP datasets.

Mapping shellfish using field-derived spectral endmembers first entailed adjusting
the bandwidth of the spectral endmembers of the GER 1500 Spectroradiometer to mimic
the number of bands and spectral range of the remotely sensed data.  Specifically, the
GER spectroradiometer that was used to collect the in situ shellfish spectral signatures
has 512 bands (spectral range of 350nm – 940 nm), AISA has 7 bands (spectral range
498nm – 819 nm) and HyMAP has126 bands (spectral range 0.4529 – 2.4822 nm).
Depending upon the spectral range and number of bands, each remotely sensed dataset
required having the in situ spectral signatures convolved to match the specific remotely
sensed imagery platform.  The in situ spectral signatures were then processed through a
MNFT in the same manner as the imagery.  The last step in processing the in situ spectral
data is to compile then into a convolved spectral library that was then used as input into a
mapping process such as the MTMF mapping.

The analysis of the LiDAR data was exploratory in nature, and used to investigate
if high spatial resolution elevation data was helpful in classifying shellfish reefs.  One
question we initially posed was whether LiDAR be utilized to differentiate textural
differences between shellfish classes, mud and vegetation?  A secondary question was the
ability to incorporate classified LiDAR data into a neural network approach to classify
remotely sensed imagery?  This last question posed difficulty in answering due to spatial
misalignment between the LiDAR data set and the other geospatial data products.

4.2 Mapping Remotely Sensed Imagery From In situ Derived Endmembers

4.2.1 Mapping In situ Endmembers Using AISA Imagery
The mapping of the AISA remotely sensed imagery, as described in the

Methodology section, started with masking and executing an MNFT to reduce the
dimensionality of the data and any band-to-band correlations.  This aspect of the
methodology was the same for all the datasets analyzed.  Before the MTMF is executed,
the user must decide on which endmember to use as inputs.  If the user chooses to utilize
in situ endmembers then the implementation of the Pixel Purity Index is skipped and the in
situ endmembers are convolved to match the specific bandwidths of the imagery. A MNF
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transformation is then implemented on the in situ endmembers prior to inclusion into the
MTMF algorithm.

4.2.1.1    MNF Rotation of Imagery and In situ Endmembers
In order for in situ derived spectral endmembers to be utilized for spectral

analysis, they must first be convolved to match the specific bandwidths of the imagery
that was used for mapping. Because the remotely sensed images were transformed using
the MNF rotation algorithm, the spectral signatures were also transformed.  Figure 4.1
shows image-derived endmembers from the BOB 4 sample site and aggregated in situ
spectral signatures.  This figure shows that for the most part, the endmembers and in situ
curves line up spectrally with little error. The red/infrared shift for both the shorter AISA
derived endmembers and the in situ spectral signatures all co-inside.  The AISA derived
endmembers do not match the spectral range of the in situ endmembers due to the in situ
spectral endmembers not having been convolved to match the AISA spectral range.
Figure 4.2 shows after the in situ spectral endmembers have been convolved to match the
AISA spectral bandwidth and range.  The spectral signatures in red are in situ
endmembers that have been aggregated and convolved to match the AISA imagery
bandwidth and spectral range.  The black spectral signatures are the AISA spectral
endmembers that were derived from imagery at the BOB 4 sample site.

Figure 4.1 - Spectral curves of in situ and AISA imagery shellfish

The in situ endmembers align very closely with the image endmembers, the
exception being that it appears the image-derived endmembers (black) have a lower
reflectance than the in situ endmembers.  This may be the result of image and in situ
endmembers acquired on different dates or differences in radiometric corrections.  This
underscores a concern that is expressed in the literature on the accuracy of using in situ
derived versus image-derived endmembers for mapping.  The literature supports this
contention that better results are obtained using imaged derived endmembers for the
reasons stated above (Elmore, et al. 2000)
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Figure 4.2 - Convolved In situ Endmembers and AISA Image Endmembers

4.2.1.2    AISA Mixture Tuned Matched Filter (MTMF)
Using the convolved in situ endmembers, we mapped the endmembers in two

parts using the AISA imagery.  The first part used the in situ endmembers aggregated
from BOB 1 through 3, (aggregated clusters BOB A through C).  The second part utilized
in situ endmembers from BOB 4, (aggregated clusters D through G).  One reason for this
is due to using the first five transformed AISA eigenimages and mapping one endmember
less than the number of eigenimages used.  Additionally, the first set of endmembers
were not native to the study area of interest but the sample sites BOB 1-3 are the closest
to BOB 4 than any other sample site. Endmembers needed to be tested to see if those that
were derived from the study site had the same level of mapping accuracy as endmembers
derived from the area of interest.  Figure 4.3 shows the last two revisions of mapping
using BOB A through C in situ endmembers.
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Figure 4.3. - BOB A through C In situ Mapping

Selection of
Endmembers

Selection of
Endmember
s

Selection of
Endmember
s

BOB A MTMF Score Infeasibility (y) vs. MTMF Score (x)

BOB B MTMF Score Infeasibility (y) vs. MTMF Score (x)

BOB C MTMF Score Infeasibility (y) vs. MTMF Score (x)
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The MTMF results were very similar between BOB A, BOB B, and BOB C in
situ endmembers.  The endmembers from the scatter-plots that were collected using the
scatter plots were unique as measured by the Jeffries-Matusita Transformed Divergence
test (scores greater than 1.8).  When in situ endmembers BOB D through F were utilized
for mapping the AISA imagery and the subsequent endmember revisions were made
using the 2-dimensional scatter plots, it was found that the revised endmembers were not
unique and were combined into a single class of endmembers.  Figure 4.3 shows the
result from mapping these single class endmembers.

Figure 4.4 - BOB D through F (combined) Revision 1 Endmembers with AISA Imagery

It is interesting to note that when the revised endmembers are shown on the
MTMF score, their location is geographically different than where they were sampled in
the field, but they are located in an area that contains dead brightly reflective shells, few
live shellfish and a similar type of strata as found on top of BOB4 (BOB D through G
were field sampled from BOB 4).

Most of revised
endmembers
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4.2.2 In situ Spectral Mapping Using HyMAP Imagery
The use of the 4.0 x 4.0 m HyMAP imagery with in situ endmembers follows the

same analysis flow schema as described in Figure 3.7 in the Methodology section.  The
spectral image analysis was performed using a subset of HyMAP bands 2 - 44. One
limitation of using the in situ spectral imagery is the GER 1500 spectroradiometer is
calibrated from 350- 1050 nm while the HyMAP imagery has a spectral range of 439.0 –
2482.2 nm.  To utilize the in situ endmembers, the HyMAP imagery had to be subset to
the same relative spectral range of the in situ data.  Consequently, the HyMAP subset that
was utilized for the purpose of mapping the in situ endmembers were bands 2 through 44
(452.9 – 1078.8 nm).  The in situ endmember sets were derived from BOB A through
Bob G sample sites (see Table 4.5 – Shellfish Secondary Aggregation for specific sample
points used) which were convolved to match the HyMAP band widths and spectral range.
Figure 4.5 shows the convolved in situ endmembers with HyMAP endmembers of
shellfish from the BOB 4 sample site.

Figure 4.5 - Comparison Between HyMAP and In situ Endmembers

The overall alignment between the HyMAP and in situ endmembers is very good but it is
also interesting to see there is a greater slope increase in the red to infrared between the in
situ and image endmembers. At approximately 700 nm, the in situ endmembers exhibit a
greater overall reflectance than the in situ endmembers.

4.2.2.1 MAP Masking and Minimum Noise Factor Trans.  (MNFT)
The HyMAP image with a spectral and spatial subset showing bands 2-44 of the area
around the BOB4 sample site is shown in Figure 4.6 (first image).  The second image in
Figure 4.6 shows the HyMAP subset with vegetation and water masked. Only shoreline
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and patch reefs were not masked since our principal areas of investigation were patch and
fringing reefs. The MNFT of the HyMAP subset bands 2 - 44 is shown in Figure 4.7

Figure 4.6 - HyMAP Sunset and Mask Image

Figure 4.7 - Eigenvalues of ACORN HyMAP 2_44

The chart in Figure 4.7 shows a dramatic leveling out of the slope
beginning at eigenimage 7 and flattening out by eigenimage 10.  The cumulative
percent for the first ten images explains almost 56% of the variance.  This is an
unexpected low value but is consistent with the amount of variance explained with
the other subsets that were analyzed for the same image.  A visual inspection of the
first 10 eigenimages shows by the tenth eigenimage the image cohesion is starting
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to be compromised and by the eleventh eigenimage there is no discernable pattern.
Figure 4.8 shows the MNF rotation of the HyMAP image.

Figure 4.8 - MNF HyMAP Subset 2-44  Eigenimages 1-6.

Figure 4.8- Continued Eigenimages 7- 10 HyMAP Subset 2-44
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The ten eigenimages displayed show various images that have higher values
within the patch reefs but limited information can be deduced from fringing reefs along
the shore due to the larger 4.0 x 4.0 m pixel size. Eigenimage 1 highlights the shore,
eigenimage 2 appears to highlight the shellfish portions of the patch reefs, and
eigenimage 3 being the opposite and highlighting mud.  It appears the remaining images
highlight various combinations of mud, standing water and shellfish.  For the MTMF
mapping process the first ten eigenimages were used as inputs.

4.2.2.2 HyMAP Mixture Tuned Matched Filter (MTMF)
The initial runs used the convolved in situ spectral endmembers from BOB A

through G and the endmembers from a shellfish patch reef located within the subset
image.  The success of using in situ endmembers for identifying patch reef was marginal.
This set contained seven shellfish endmembers from the aggregated in situ endmembers
with all but one resulting in the data range being extremely narrow (the data being
centered on zero, representing the suppressed background data).  Figure 4.9 shows the
endmember BOB E, which is an aggregate of dead shellfish that have higher over-all
brightness.

Subsequent mapping efforts centered on BOB G endmembers and refining the
selection of endmembers using the 2-dimensional scatter plot with the Infeasibility
image.  After three more successive rounds of mapping and refining endmembers Figure
4.10 shows the results with a density slice over lay to identify pixels that are highest
scoring for shellfish.

Figure 4.9 - MTMF Result for BOB E In situ Endmembers
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Figure 4.10 - MTMF 5 BOB “G” In situ Endmembers

These runs were more promising, resulting in wide data range with values from -
1.22 to 1.98.  The image in Figure 4.10 was stretched between 0.013 and 0.995 to show
pixels that have the highest probability of being shellfish.  Of interest is BOB G which is
primarily composed of shellfish from BOB 4. This sample site contains live vertical
clustered shellfish, not dead washed shells that exhibit higher spectral reflectance.  Since
the in situ endmembers originated from BOB 4 (larger patch reef), it was expected these
features would map with a higher probability. This assumption proved correct.  In
addition, there were additional pixels mapped that showed higher probabilities of being
correctly mapped as shellfish on the left side of the image and to the north.  Pixels
colored cyan indicate a lower probability of being correctly mapped than the sea green
and magenta pixels.

4.3 Mapping Image Derived Endmembers From Remotely Sensed Imagery

4.3.1 AISA Imagery Spectral Mapping
The study area for the AISA imagery included the BOB4 study site since this area

contained the largest patch reef within the sample sites as well as additional surrounding
patch reefs.  Figure 4.11 shows both the study site and surrounding patch reefs and the
AISA study area with the spectral mask applied.
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Figure 4.11 - BOB4 AISA Study Area and Image Mask

4.3.1.1  ASIA Minimum Noise Factor Transformation (MNFT)
Seven bands of the AISA imagery, with the mask band applied, were used to

derive the MNFT.  Figure 4.12 shows the graph of the eigenvalues, band weightings, and
cumulative percents of eigenvalues. Upon examination of the MNF transformation
statistics, it appears that the variance between eigenvectors 6 and 7 show the least amount
of change.  The first six eigenvectors account for more than 98% of the total variance and
looking at the band weightings shows band 7 in eigenvector 2 as having the highest
weighting with band 3 in eigenvector 5 and band 4 in eigenvector 3 second and third
respectively.

Visual inspection of the eigenimages shows image cohesion starts to be
compromised in eigenimage 6 with eigenimage 7 showing no discernable patterns.
Eigenimage 5 appears to show the remaining sun glint and shadows that was not masked
out of the image.  Of interest is eigenimage 1, which shows the higher value areas of mud
and higher density live shellfish. Eigenimage 2 represents areas of bright shellfish that are
dead on top of the patch reef but in eigenimage 3, it becomes more difficult to interpret as
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mud is highlighted with areas of known mud not highlighted. Eigenimage 4 and 5 tend to
be more ambiguous and not as readily interpretable but with eigenimage 6 and 7 image
cohesion breaks down with very little to interpret within the image. Using the statistics
and visual interpretation as described above it was decided to use the first four
eigenimages for further processing in the Pixel Purity Index to derive the endmembers for
mapping shellfish.

Figure 4.12 - AISA MNF Transformation Statistics

Figure 4.13 - Minimum Noise Fraction Transformation of AISA Imagery
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Figure 4.13 - Continued MNF Eigenimages

Figure 4.13 - Continued MNF Eigenimages
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Figure 4.13 - Continued MNF Eigenimages

4.3.1.2   AISA Pixel Purity Index (PPI)
The parameters used for the Pixel Purity Index was a threshold factor of 2 and 10,

000 iterations.  The curve describing the number of spectrally pure pixels was relatively
flat after the initial round after finding 1853 pixels that were designated as spectrally
pure.  Figure 4.14 shows the image produced from the process over-laid on the AISA
image and density sliced by value for better viewing.

Figure 4.14 - MNF Iteration 9 Pixel Purity Index
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From the pixels that were marked as spectrally pure, these were then processed in
the n-Dimensional Visualizer within ENVI.  The n-Dimensional Visualizer assigns the
pixels to classes and displays the results of the colored classes visually in a multiple
dimensional viewer. The user can manipulate these classes in various dimensional axis’
as well as rotate and turn to inspect the data cloud.  The user has the option of including
additional endmembers within the class or endmember bundle, delete classes or add more
classes.  The user also has the option of exporting a class of pixels to the Region of
Interest (ROI) viewer to view the pixels within the image.  This is helpful in deciding if a
certain class of endmembers correlates with a priori knowledge the user may posses of
the image.  This inspection of the data is the most subjective portion of the analysis and is
discussed in greater detail in the Discussion section.  Figure 4.15 illustrates the two
classes of endmembers that were collected using this technique.  There were 20
endmembers that were collected to represent the shellfish. This was to ensure enough
spectral variability to adequately map most or all of the shellfish found within the study
area.  Only six endmembers were selected to represent the mud class.  Fewer mud
endmembers were found but this may reflect the narrower spectral variability of mud
within the scene.  Figure 4.15 illustrates graphically the two classes with the Pixel Purity
Index image overlaid on the AISA image for two sample sites within the study area.  A
final proof of separability between the two classes is the use of a statistical test named the
Jeffries-Matusita Transformed Divergence test.  The two classes are termed separate if
the score is above 1.8; a score below this value indicates they should be merged into a
single class.  The results of this test yielded a score of 1.895, which indicates these two
classes (shellfish and mud) are distinct and separable.

Figure 4.15 - Regions of Interest (ROI) for Image Derived Endmembers - AISA
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4.3.1.3   AISA Mixture Tuned Matched Filtering (MTMF) Mapping
An MTMF and Infeasibility Score (two images for each endmember) was

calculated using the endmembers from the BOB4 study site as input into the MTMF.
Results of several MTMF runs are shown in Figure 4.16.  This figure shows the
pixels mapped as shellfish with values linearly stretched between just above zero (the
background pixels) to one.  Also displayed is the 2-dimensional scatter plot of the
MTMF Score (x-axis) and Infeasibility Score (y-axis) showing most of the pixel
values residing between zero and one with a relatively low score on the infeasibility
axis.

Figure 4.16 – MTMF Results for Shellfish AISA Imagery BOB4 Study Site.

Interactive stretching uses set minimum and maximum values (0.0 to 1.015) and
“stretches" those values over the whole range of values that can be displayed.  Figure
4.17 shows the results obtained for mud using the MTMF process and stretching the pixel
values from zero to one.    This image represents mud features, and has values from -
0.014 to 0.968 stretched to isolate and map the mud pixels.  Notable is the scatter plot
showing most of the pixels with the lowest infeasibility values centered near zero to one,
thus illustrating a successful endmember mapping process.
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Figure 4.17- MTMF Result for Mud Endmember AISA Image BOB4 Study Site

4.3.2 HyMAP Imagery Spectral Mapping
4.3.2.1  HyMAP Minimum Noise Factor Transformation (MNFT)

It was determined that the best subset of the 126-band HyMAP imagery was
bands 2 - 61, unlike bands 2-44 that were used for the in situ mapping.  This difference
may be explained by the optimal use of bands and the limitations imposed by using the
GER in situ data.  For example, bands 61 - 126 contribute very little to the weights of the
MNFT when bands 41 - 126 or bands 2 - 126 are subjected to the MNFT.  This report
shows the results from using bands 2-61.  Band 1 was not considered due to the
prevalence of noise within this band.  Since the targeted features were shellfish and mud,
a mask was applied that effectively negated water, vegetation and areas outside of the
image that would otherwise be considered in the MNF transformation.  As previously
described, the inclusion of water and vegetation in the MNF transformation skews the
eigenimages to favor the water and vegetation, effectively relegating mud and shellfish to
the lowest end of the eigenvalues.  Any of the subtle variances within mud and shellfish
are lost within the larger variances of the vegetation and water.  The same mask was
applied to the image endmember analysis as was used in the MNF transformation.

All bands between 2 and 61 were utilized in conjunction with the mask band for
use in the 2-dimensional feature space viewer.  This process resulted in the
transformation of each band and the creation of 60 eigenimages, including standard
statistics of each of the eigenvalues and transformed bands.  Figure 4.18 shows the graph
of the eigenvalues versus eigenvectors, indicating the typical steep descent of the curve,
followed by a longer flatter curve.
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Figure 4.18 - Eigenvalues of ACORN_SPECSUB2_61_MNF1

In Figure 4.18, the curve starts to flatten out around the 6th eigenvector and is flat
by the 10th eigenvector.  When significance between eigenvectors diminishes, very little
information is contributed to the explained variance.  The ability to reduce the
dimensionality of a hyperspectral image is a key component in the analysis of
hyperspectral imagery.  Since many of the bands within a hyperspectral image have a
high degree of colinearity, the ability to eliminate redundant information or information
that is of no use, is an important step.  The next step was to visually and statistically
examine the eigenimages to select the eigenimages that represent shellfish; and eliminate
eigenimages that represent noise.  Table 4.1 shows the top three bands for each
eigenvector that contributed the most to each eigenvector.

Table 4.1 - ACORN_SPECSUB2_61_MNF1 Weights

Upon reviewing the individual MNFT eigenimages (Figure 4.19), the images
become grainy around fraction 9 or 10, because there is no pattern to the light / dark
pixels that would correspond to either mud or shellfish.  Taking all the pertinent
information together, MNFT eigenimages 1 - 10 were more suitable for further refining
of the pixels via the pixel purity index.  How much of the total variance is accounted for
when utilizing just 10 out of a possible 59 eigenimages?  Table 4.2 shows the cumulative
variance that is associated with each successive eigenimage.  With 60 bands and a
masked portion of the imagery, the first 8 eigenimages account for 46% of the total
variance.  This was an unexpectedly low value but could be caused by a number of

Band Contributions and Weightings:

Principal Component Analysis for Acorn_SpecSub2_61_MNF1
PC Number BANDS WEIGHTS
PC 1 Band 6 Band 2 Band 3 11.987379 9.2760573 8.5539724
PC 2 Band 8 Band 6 Band 16 29.277465 18.890562 7.220803
PC 3 Band 5 Band 4 Band 12 41.006034 7.734877 6.4461721
PC 4 Band 15 Band 13 Band 19 15.454924 14.655724 9.3147558
PC 5 Band 2 Band 15 Band 26 10.631192 10.335425 8.0594018
PC 6 Band 16 Band 17 Band 35 16.724908 4.6216271 8.6137405
PC 7 Band 28 Band 18 Band 16 8.4118245 7.4878084 6.9099657
PC 8 Band 39 Band 31 Band 20 11.9482 11.251051 9.9917252
PC 9 Band 47 Band 22 Band 16 7.5668694 6.7345066 6.6067521
PC 10 Band 16 Band 50 Band 31 15.394009 8.2520497 7.0312418
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factors.  Most prominent is the large number of bands used as input. One also must
consider that none of the single or group of bands carries a disproportionate amount of
the variance in the scene.  Hence the variance may be spread out evenly over all the
bands.  Table 4.2 shows the highest three weights and bands within each of the first ten
MNFT eigenvectors. It is difficult to pinpoint at this stage of the analysis, a single band
or bands that discriminate shellfish from mud easily.  It is safe to conclude that the most
optimal bands for identifying mud and oysters are the visible bands (blue, green and red).
Although the highest weighted principal component is in component 3 and band 5
(0.4972 µm) is listed as having the highest weighting, with component 2 and band 8
(0.5439 µm) having the second highest weighting.  Band 5 is in the blue region of the
electromagnetic spectrum and band 8 is in the green region. Although the two bands are
relatively close to the lower limit, band 5 is around the maximum transmittance of clear
water while band 8 is in the lower area for the detection of chlorophyll.  In this case, the
presence of diatoms may be influencing the reflectance patterns.

Table 4.2 – Cumulative Percent ACORN_SpecSub2_61_MNF2

MNF Band Eigenvalue Cumulative Percent 
     Band 1 113.715216 19.68291099
     Band 2 38.496547 26.34625944
     Band 3 25.867514 30.82365476
     Band 4 20.076597 34.29870309
     Band 5 16.016936 37.07106669
     Band 6 14.004451 39.49509025
     Band 7 12.275391 41.61983166
     Band 8 10.877002 43.5025266
     Band 9 9.760726 45.19200588
    Band 10 9.31478 46.80429659
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Figure 4.19 - Minimum Noise Factor Transformation (MNFT) for
ACORN_SPECSUB2_61_MNF1 BOB4 sample site

c. MNF3 d. MNF4

a. MNF1 b. MNF2
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e. MNF5 f. MNF6

g. MNF7 h. MNF8
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4.3.2.2  HyMAP Pixel Purity Index (PPI)
The Pixel Purity Index for the ARCORN-processed HyMAP image subset was

derived using ENVI software.  As stated above, the purpose of the Pixel Purity Index
(PPI) is to transpose the pixels from the MNFT image into multiple dimensions and rotate
the data cloud, then mark the number of times certain pixels on the extreme edge of the
data cloud are captured.  This technique was derived from the convex hull geometry
concept (Boardman, 1993).  The purpose is to compile a list of pixels that are the most
extreme and thus the most spectrally pure.  These pixels are then utilized to map the
image for a specific earth material or endmember.  There is a large degree of relative
objectivity injected by the analyst in the sense that many endmembers have the ability to
be selected with varying degrees of pureness. It is up to the analyst to determine which
ones are of most utility and represent the material of interest.  Additionally, one spectra
or endmember may not adequately reflect the full range of spectral variability found in
situ.  To counter this endmember “bundles” with multiple endmembers have been
produced to try to encompass the spectral variability. This has limitations since you can
only have n -1 number of endmembers compared to the number of input eigenimages
used in the mapping (Bateson, Asner, and Wessman, 1998).

In the course of this research there was dozens of permutations of the imagery and
parameters computed.  For purposes of this report, only the results from the most
successful runs of the endmember selection and mapping are discussed.  The first ten
eigenvectors were used with five thousand iterations with a threshold factor of 1.0
resulted in finding 999 spectrally pure endmembers within the image subset.  In Figure
4.20, the Pixel Purity results show the full range of the pixel values in a density slice.  As
a matter of reference, pixels with a higher score are considered more “spectrally pure”
than pixels with a lower score (the number represents the number of times the pixel is
marked as extreme).  Only one pixel had a score greater than 754 (the most spectrally
pure) and two pixels were in the 646 - 753 range. From a priori knowledge, both of these
sets were located within the shellfish reef areas.  These sets were utilized as input into the
MTMF mapping method and then subsequently refined to obtain more accurate shellfish
mapping

Viewing the results, most of the pixels are low scoring and thus do not represent
spectrally pure pixels.  To isolate the higher scoring pixels, subsequent density slices

i. MNF9 j. MNF10
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were preformed on the threshold values. Figures 4.21 exclusively show the higher scoring
pixels as many of the lower scoring and less pure pixels have been eliminated.  Figure
4.22 shows the higher threshold and the most spectrally pure endmembers from the PPI
process overlaid upon the HyMAP imagery study area (scores labeled).   After further
refinement of the shellfish and mud endmembers by successive iterations of mapping, the
Figure 4.23 shows the endmember results that were used for the final MTMF mapping.

Figure 4.20 – PPI Image showing Full Range of Pixel Values
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Figure 4.21 - Pixel Purity Index Showing Values From 154-861

Figure 4.22 - Pixel Purity Index Showing Values From 154-861
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Figure 4.23 Shellfish and Mud Endmembers

Figure 4.23 shows all the endmembers selected from the field sampling site
BOB4 which has a higher spectral reflectance than the surrounding mud patch reef.
There are 23 green pixels which are shellfish and 25 yellow pixels represent mud.

4.3.2.3  HyMAP Mixture Tuned Matched Filtering (MTMF) Mapping
The same endmembers were used as input into the MTMF algorithm along with

the first ten MNFT eigenimages produced four images, two MTMF Score images and
two Infeasibility images (one for each endmember).  To aid in visual interpretation, the
results are density sliced and color added to the categories.  As expected, pixels that were
from the location of the endmembers scored the highest and the areas immediately next to
and around the endmember locations scored the next highest.  Pronounced distance decay
is observed with pixels that are further away from the locations where the endmembers
were chosen.

Endmember spectra used for input were obtained from the Pixel Purity index
rather from the n-Dimensional Visualizer.  Since familiarity with the area allowed a
priori knowledge of the study site, specific endmembers are known to be shellfish or
mud.  The endmembers are designated for analysis by simply dragging-and-dropping the
endmember on to the endmember collection dialog box.  Since these endmembers were
collected from an image that already had under-gone the MNF rotation there was no need
to convert the endmembers into MNF rotated endmembers.

Each endmember that is used as input produces two images: 1) the Mixture Tuned
Matched Filter Score image shows the mapped pixels with their DN designating the
probability of the pixel matching the reference endmember, 2) an Improbability Score
shows the degree of probability of a pixel being not correctly identified.  Figures 4.24 and
4.25 show the MTMF Score for shellfish and mud overlaid on the HyMAP subset image
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with the values stretched between 0-1 with a density slice.  What is interesting to note is
that mud is found in the same locations as shellfish although the values of mud indicate a
lower probability of correctness where shellfish have a higher degree of correctness.

Figure 4.24– MTMF Oyster Result With HyMAP Image

Mud was also found to have a greater areal extent than shellfish, as you would
expect.  From a priori field work, there are areas known to have shellfish that are not
scored as having shellfish, there should exhibit some refinement of endmember mapping
is subsequent rounds of mapping.  Using the 2-dimensional scatter plot of the MTMF
Score versus the Infeasibility Scores, we can select endmembers with a high MTMF
score and low Infeasibility Score.  Figure 4.26 shows the 2-dimensional scatter plot and
selected endmembers.  The Y-axis is the MTMF Infeasibility score and the x-axis shows
the MTMF score.  Selection of the endmembers that have a low infeasibility and high
MTMF score are shown in the figure.
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Figure 4.25 - MTMF Mud Result with HyMAP Image

Figure 4.26 - Scatter Plot of MTMF Scores Versus Infeasibility

Collection of these endmembers is accomplished by exporting the endmembers
and then saving them as library spectra.  Once they have been exported they are viewable
within the HyMAP subset image. Figure 4.23 above, shows the mud and shellfish
endmembers that were exported and saved as library spectra.  In the figure showing the
location of the mud and shellfish endmembers, the green pixels represent shellfish and
yellow pixels represent mud.  These endmembers are then stored as a spectral library and
used as input into the next round of mixture tuned matched filtering.  In the first round of
mapping the endmember values of the mapped shellfish pixels were from -0.55697 to
1.2690 and there was a greater amount of fringing reefs.
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Second round of mapping produced results that were more focused where the
endmembers were located and showed an increase in the range of pixel values.  Figures
4.27 through 4.29 shows the mapped results of the second round of mixture tuned
matched filtering for shellfish and mud.

Figure 4.27 – MTMF Second Round Mapping of Shellfish
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Figure 4.28 – MTMF Second Round Mapping of Shellfish Overlay with
HyMAP Image

Figure 4.29 – MTMF Second Round Mapping of Mud

4.4 Mapping Using Visual Learning System’s Feature Analyst®
Previous studies conducted by NOAA’s Coastal Services Center indicated that

Feature Analyst had difficulty discriminating oyster from textured mud, sparse Spartina
and other marsh plants and their shadows which can be confused with low-profile oyster
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with mud (KAPPA = 63.3%) (NOAA, 2003). In this project, both fringing and patch
reefs were adequately captured using Feature Analyst although superior results can be
achieved in several iterations through testing of input data layers and input representation
(Figure 4.30). The extraction of oyster strata could be improved with additional ancillary
data (i.e. shoreline) and better ground-referencing polygons of varying classes of oyster
strata. Additional field surveys with high levels of detail would help to increase the
accuracy of the delineation of the strata through improved training site input.

In summary, Feature Analyst provides:
• Spectral and spatial context in imagery
• Easy-to-use software
• Operation on widely used-GIS platforms (ArcGIS, ArcView, and ERDAS

Imagine)
• Hierarchical learning approach to achieve the best results possible

Figure 4.30 Examples of fringing and patch reefs captured using Feature Analyst.

4.5 LiDAR Imagery
The Light Detection and Ranging (LiDAR) imagery was flown by Airborne 1,

a commercial data provider, in North Inlet, SC on January 16th, 2003.  Two flight
lines were run to collect elevation and intensity information of the first and last
returns of the laser beam.  The flight paths collected data from Jones Creek 1 and 2,
BOB’s Garden 1 through 4, No Man’s Friend Creek 2.  LiDAR data were not
collected for Jones Creek 3 and No Man’s Friend Creek 1.  This very dense point
coverage, even by LiDAR standards, collected 6,638,640 points with average post
spacing of 0.25 meters.  Figure 4.32 shows the LiDAR over-laid on 0.69 meter spatial
resolution ADAR imagery that was flown in 1999.  One aspect of LiDAR is its
precise geolocational attributes. The LiDAR elevation data over-laid on the ADAR
imagery shows good alignment with the LiDAR elevation TIN coverage (Figure
4.32).  The utility of georectification of imagery within the estuary is problematic
simple due to the lack of stable and recognizable ground control points within the
estuary.  Natural features tend to change over time and the number of permanent
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anthropogenic features is limited. LiDAR data facilitates the capability of
georectifying imagery with acceptable accuracy.

LiDAR imagery was first analyzed using the elevation returns at the BOB 4
study site for shellfish classification applicability.  A good visualization tool is the
creation of Triangulated Irregular Networks (TINs) from the point data.  This product
shows quite clearly the water, patch reefs, and vegetated areas.  Figure 4.31 shows the
elevation TINs that have been classified into nine groups based upon the data
historgam. The highest elevation in the study area is the vegetated burm along the
shore with the lowest areas being water.  It is difficult to determine is the classified
elevation data can show differences between shellfish or mud.  Although the LiDAR
data postings are very close, (0.25 m) there appears to be a lack of vertical
displacement between the shellfish and mud in order to adequately differentiate
between the two features.  Based on this assessment, the utility of using either the
first or last returns of the elevation data appears to not contain enough variation to
effectively discriminate shellfish classes.

Figure 4.31 - LiDAR Elevation Last Returns TIN – BOB 4 Study Area
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Figure 4.32 - LiDAR Last Return Elevation TIN Over-Laid on ADAR Imagery

LiDAR intensity values were also assessed for their ability to discriminate
between shellfish classes. The intensity of the last returns does not allow for a
realistic classification of shellfish assemblages with the data in its original form after
being transformed into TINs.  As in the analysis of the AISA and HyMAP imagery,
points within the patch reefs were isolated that contained both a combination of mud
and shellfish areas.  A statistical look at the data showed there to be a pronounced
skewness to the data.  Figure 4.33 shows the intensity of the last returns as a TIN file
that was subset from the data.  The image cohesion of the TIN intensity last returns is
very poor and physiographic features within the study area are barely discernable.
Statistics of the selected patch reefs show the highly skewed data.  A logarithmic
function was applied to the data to produce less skewed statistical data with the
following results displayed in Figure 4.34.
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Figure 4.33 – LiDAR Intensity Returns

Figure 4.34 - LOG Transformed LiDAR Data
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The creation of a raster continuous surface using the interpolation techniques known
as Radial Basis Function interpolation was accomplished from the Log transformed
points and classified into four classes. This surface is shown alongside the South
Carolina Department of Natural Resources (SCDNR) shellfish survey for Bob’s
Garden in Figure 4.35.  It is interesting to note that in the LiDAR log transformed
classification there are only three classes of shellfish based primarily on the relative
composition of shellfish and mud rather than differences within the shellfish
population.

Figure 4.35 - Log Transformed Radial Basis Function of BOB 4 Study Site

Figure 4.35 LiDAR shows only four classifications, mud, mud and shellfish,
shellfish, and higher density shellfish. It should be noted that the pink class of higher
density classification (in the upper right portion of the sample site) is actually an area
of dead washed shells that repose horizontally. The lower bottom portion the area
consists mainly of higher density live shellfish that are vertically oriented.

Comparison Of LiDAR and Field Derived Shellfish Classifications

Last Pulse LiDAR Intensity
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Figure 4.36 - BOB 4 LiDAR Log Transformed Last Return Using RBF

Using the same log transformed data points for the BOB4 sample site, the
continuous raster surface was interpolated using the Radial Basis Function (RBF).
Using different parameters for the kernel functions and decreasing the neighborhood
size, resulted in greater classification sensitivity.  Figure 4.36 shows these
classifications alongside the SCDNR’s field survey for the same sample site.  The last
intensity returns have the ability to classify the shellfish with greater sensitivity.  One
downfall of the field sample site is the inability of the surveyor to adequately and
objectively classify different shellfish classes.  This is partly due to the inaccessibility
of the shellfish and the presence of very soft mud that does not allow the surveyor to
easily walk the outlines of the shellfish using a global positioning system.

The use of Kriging was applied to the same BOB 4 sample site using the log
transformed last returns.  As mentioned above Kriging is a geostatistical interpolator
that utilizes the autocorrelation relationships of the measured points to fit the line
around the predicted location (ESRI 2005).  There are many variations of Kriging but
the method that was found to have the best results was ordinary Kriging.  Figure 4.37
shows the results of using ordinary Kriging with the same log transformed last returns
LiDAR points that were utilized with the radial basis function interpolation.

Comparison Of LiDAR and Field Derived Shellfish Classifications
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Figure  4.37 - BOB 4 LiDAR Log Transformed Last Return Interpolation Using Kriging

4.6 In situ Spectral Comparison of Cape Canaveral National Seashore
In May of 2003, a field excursion was initiated to Mosquito Lagoon within the

Cape Canaveral National Seashore Park.  The purpose of the excursion was the
mapping, spectral sampling and specimen sampling of inter tidal shellfish.  Mosquito
Lagoon lies at the southern distribution of Crassotrea virginica and within the recent
past experienced a surge of anthropogenic disturbances in the form of boat traffic
through the lagoon and the adjacent Intercoastal Water Way (ICWW).  Generally,
shellfish mortality in Mosquito Lagoon was observed to be higher and density of live
shellfish was less than observed in the North Inlet study areas.  The tidal range is
considerably narrower in Mosquito Lagoon than the North Inlet study area with
vertical accumulation of shellfish reefs within Mosquito Lagoon no observed.  Like
North Inlet, Mosquito Lagoon displayed creek banks with dead shell piled above the
high tide water mark.  Presumably from boat traffic wakes washing shells onto the
banks.

Since a majority of the shellfish observed at Mosquito Lagoon exhibited a low
relief within a humid tropical environment it was observed there was a larger quantity
of algal growth on both live and deceased shellfish.  Coincident with this observation
it was hypothesized the spectral results would indicate a larger shift in the red to
infrared spectral regions indicative of active photosynthesis.  Figure 4.38 shows a
comparison between spectral signatures collected at Mosquito Lagoon and BOB4 and
Jones Creek sample sites within North Inlet.  The BOB4 sample sites are typical of
vertically clustered live shellfish (F1 strata) and the Jones Creek 3 sample site is
composed only of washed shell either dry or wet as noted.  All samples were

BOB 4 LiDAR Intensity Log Transformed - Kriging
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collected in May of 2003.  An examination of the chart (Figure 4.38) shows the
highest overall reflection were the Jones Creek 3 washed shell both wet and dry.

Figure 4.38 - Spectral Comparison of Florida and South Carolina Shellfish

Examination of the chart in Figure 4.38 shows a slightly greater reflectance
increase from the red to the infrared spectral regions from the Mosquito Lagoon
sample site than from the North Inlet sample sites for either the washed or live
vertically clustered shellfish.  The spectral samples from Mosquito Lagoon with the
vertically clustered dead shellfish followed by the live BOB4 vertically clustered
shellfish having the lowest overall apparent reflectance.  These results are consistent
with the belief that the washed shell from North Inlet spends the majority of time out
of water and thus exposed to more of the bleaching effects of the sun and less algal
growth.  Even live shellfish from North Inlet (BOB4 samples) did not have as large
an increase in the red to infrared region as the shellfish from Mosquito Lagoon.  This
is presumed due to the BOB4 shellfish having a higher vertical relief.  BOB4_11 and
12 sample points are from predominately washed shellfish that are situated lowest in
the tidal stage and thus spend most of the tidal cycle submerged.  It was also observed
at these sample points to have the most abundant algal growth within the annual
sample period thus providing a close environmental similarity with the Mosquito
Lagoon shellfish than any of the remaining sample points within North Inlet.  A May
spectral sample for BOB4_12 does not exist due to being submerged at the time of
sampling so the June dry sample is substituted.  The May BOB4_11 sample that is
represented was taken while the shellfish were wet.  Figure 4.39 shows the chart of
the Mosquito Lagoon samples and the North Inlet Samples of similar shellfish strata.

Comparison of CANA vs South Carolina
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Figure 4.39 – Mosquito Lagoon and North Inlet Shellfish: Lowest Lying

Examining Figure 4.39 shows the shellfish from North Inlet having a lower
reflectance with the exception of the June BOB4_12 dry sample but the Mosquito
Lagoon shellfish exhibit a greater red to infrared spectral region shift and the
presence of a deepening “photosynthesis well” that occurs approximately at 690 nm
that is synonymous with photosynthesis activity.

5.0 Discussion
Creation of a spectral library from a year of field sampling has provided the

research community the ability to classify imagery with in situ endmember sets that have
a wide spectral range of environmental conditions and oysters strata.  There is the ability
to also match field spectral data with remotely sensed data for a specific calendar month
to attempt to match any seasonal variations.  Statistical or remote sensing software allows
the user to convolve the field data to match the remotely sensed imagery from the visible
region through the shortwave infrared regions is a useful for using the field data with any
remotely sensed platform.  Problems occur when dates or seasonal variables do not match
the variables inherent in the remotely sensed data.  Additionally, in situ data provided a
statistical inference to describe the huge spectral variability that occurs in and around the
sample sites and the ability to compare this data with the statistical variability found in
the image shellfish.  Discrepancies occur between the in situ data and the remotely sensed
data due to differences between the sensors, radiometric correction, atmospheric
correction, time of day (sun angle), and even changes over time that occur to the habitat
being sensed.  Even when seasonal variables are kept constant, obtaining similarity
between data sets can be problematical.  Best results for spectral analysis have been
found from utilizing image derived endmembers for the above reasons.
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When using remote sensing techniques, to effectively detect and map objects, the
sensor and platform must be appropriate to object being sensed (Jensen 2000).  The
spectral analysis portion of this research utilized HyMAP (4.0 x 4.0 m and 126 bands)
and AISA (0.5 x 0.5 m and 7 bands) imagery.  The object of interest was individually
quite small (~15cm long) which required higher spatial resolution imagery to effectively
detect and map the feature. However, the areal aggregation of oysters provides a greater
target for detection, identification and mapping using HyMAP imagery.  Within the
larger areal aggregation, there is a much higher spectral variability so deriving image or
in situ endmember bundles (that adequately encompasses all the spectral variability)
becomes much more difficult.  For the purposes of detecting, identifying and mapping
oysters, the idea of a spectrally “pure” endmember that resides at the extreme point area
of the data cloud is not practical or feasible.  Instead, the utilization of higher spectral
resolution imagery with as many spectral bands as possible is optimum for identification,
detection and mapping of oysters.  Our research showed that the AISA imagery was able
to identify, detect, and map individual oyster clusters more accurately than the HyMAP
imagery.  Although the HyMAP pixel contains a greater degree of spectral information,
the larger pixel size makes it more difficult to map individual groups of oyster strata
within the pixel.  Using the Linear Mixture Analysis, we can derive the fractional
abundances of each of the endmembers within a pixel, but it does not delimit the oyster
strata within the pixel. Using remotely sensed imagery with high spatial resolution,
allows the visual discrimination of groups of oysters and to a small extent the oyster
strata.  Oyster health was initially tied to the ability to derive oyster strata.  This research
to date has been unable to classify oyster strata beyond the extreme ends of the spectrum.
Bright shell (washed shell) with mostly dead oysters and few live standing oysters (“D”
strata) and higher density live oysters that are vertically oriented (“A” or “E” strata).

The use of LiDAR data for classification purposes by itself has limited utility
using elevation data.  The LiDAR data was acquired with a high level of point densities
that permitted close point spacing with the intent to infer “roughness” or “smoothness” in
differences between oysters (rough) and mud (smooth).  The level of vertical accuracy
between points was not sufficient enough to adequately derive an index of roughness
with a degree of known confidence.  The use of the intensity returns has proved to be
useful in delimiting areas on the patch reefs that have discernable differences in their
reflective properties.  As shown in the LiDAR Results section, there is a correlation of
types of materials present in the scene and the level of returned LiDAR intensity.  Due to
the angles of light incidence bright washed shells tend to have higher level of reflectance
than mud or live oysters.  Vertical oysters show a more diffuse or scattered light effect
and thus a lower intensity return than either of the washed shells or smooth mud surfaces.
Future research should explore utilizing the classification of oysters from the LiDAR
intensity returns as training inputs for Visual Learning System’s Feature Analyst to
classify AISA or high spatial resolution imagery.

A major aspect of utilizing either spectral analysis with hyperspectral imagery or
LiDAR datasets is a substantial investment in computer, software and technical expertise.
The amount of time for human and field collection of data for training purposes can be a
substantial portion of costs that are dedicated solely to the analysis of hyperspectral
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imagery.  The integration of GIS into the process adds further expense to the investment.
An advantage of the Automated Feature Extraction techniques is the time required for a
user to become relatively proficient at extracting objects of interest within remotely
sensed imagery.  Additionally, the software is embedded within many popular GIS
software packages, thereby making the results more fully integrated.  It does not preclude
the time and expense of having to acquire remotely sensed data for analysis but high
spatial resolution imagery is becoming more commonly found for multiple uses within
county and urban planning.

Adequate masking of the remotely sensed data is an important step in the
mapping process. Masking of the of the BOB4 study site in the AISA imagery was
needed to eliminate the presence of sun-glint and shadow.  The imagery was acquired in
the earlier portion of the morning so portions of stream bank areas on the west sides
showed a pronounced sun glare, while portions of stream banks on the east side were in
shadow.  To address this problem, the areas of highest glare and shadow were masked
out. This was done, rather than normalizing the data, since it becomes a question of what
the values in the areas of shadow and glare should be, without knowing if the areas in
question are mud, shellfish or water.  The spectral value of those pixels can only be
determined if a spectral reading is obtained at the location at the time of image
acquisition.  Figure 5.1 shows a horizontal spectral profile within the BOB4 study area
and identifies spectrally and spatially areas of glare and shadow.

Figure 5.1 - Horizontal Spectral Profile of BOB4 Study Area – Shadow and Sun Glare
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The horizontal spectral profile shows the x-axis of the cross-hairs which identify
spectral characteristics that associate with certain types of earth materials.  In this spectral
profile, one can see to the right of the cross-hairs, water is visible in the image and a
lower flat line is associated with the spectral characteristics.  To the left of the cross-hairs
the spectral profile dips significantly, showing areas that are in shadow.  One can assume
the material surrounding the sun glare or shadows are similar to the material within the
shadow or sun glare but within an environment that exhibits a high degree of spectral
variability, this is a large assumption.  For this analysis, it was decided to err on the
conservative side and mask out the affected areas.

Finally, an inherent limitation of ENVI and Leica Geosystem’s ERDAS Imagine
digital image processing software is the ability to statistically analyze spectral
endmembers that are not image derived.  One of the criterions imposed on selection of
image endmembers is that they are statistically distinct and separate. In ENVI, the use of
the Jeffries-Matusita Transformed Divergence test is usually applied to the ROI’s that are
to be used in mapping.  There is not a mechanism to import library endmembers that
were in situ derived to test if spectral endmembers from sample points in close proximity
are spectrally distinct.  This is especially critical when utilizing in situ endmembers
because the same bench mark test that is applied to image endmembers cannot be applied
to in situ endmember bundles to ensure they are distinct and separable in the context of
the image to be analyzed.  The digital image software are designed primarily to derive
and map imagery using either image derived or in situ endmembers but there is a lack of
tools that are specific to spectra per se for analysis and comparison of spectra.

6.0 Technology Transfer and Management Application
This is the first scientific investigation into the use of hyperspectral imagery and

LiDAR data for mapping shellfish resources. This research will lead to an increasing
number of scientists to recognize the great potential that hyperspectral and LiDAR
remote sensing offer to the shellfish mapping community. Traditional broadband,
medium-resolution sensors (Landsat ETM+, IRS-C, etc.) have largely failed in their
ability to map and separate spectral differences in shellfish habitat. High-resolution
digital frame cameras show promising results for producing quality imagery that can be
photointerpreted to delineate oyster strata. When combined with hyperspectral and
LiDAR technology, scientists have the ability to detect not only where different shellfish
strata exist, but discriminate between shellfish beds and mud and detect subtle important
health indicators which contribute to establishing better management strategies for these
resources.

The development of these new mapping techniques that utilizes the unique
spectral features found in oyster reefs will enhance coastal managers’ access to up-to-date
estuarine environmental data and information. The establishment of a web-based library
of shellfish habitat spectral profiles and the identification of the ideal precise
hyperspectral bands needed for matching these spectra will assist other resource
managers in applying the same mapping techniques to map and monitor shellfish
resources. These digital image processing routines have been transferred to other resource
managers, through workshops, published articles, and internet dissemination in hopes of
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using these tools to produce more accurate shellfish baseline maps that can then be used
for designing better biological inventories and management strategies. It is hoped that the
results from this study will be combined with tidal circulation models which have been
developed in order to determine what effects, if any, water velocity and salinity regimes
have on current shellfish distributions.

Hyperspectral applications are expanding rapidly as access to this type of data is
becoming increasing available and more affordable. The Baruch Institute will continue to
work with the NOAA Coastal Services Center and the NOAA National Estuarine
Research Reserve System (NERRS) to further integrate the results of this research and to
provide information to coastal managers as new mapping techniques become available.
Resource managers will be able to apply these newly developed procedures using
commercial off-the-shelf hyperspectral digital image processing software and research
techniques and finding that have been published. New maps that are generated using
these new techniques can be used to calculate commercial harvesting lease acreages and
look for signs of over-harvesting, reef building, and monitoring oyster population
changes.

In summary, technology transfer and management applications of this research include:

• The identification of optimal hyperspectral remote sensing bands for classifying
shellfish habitat and a series of analytical digital image processing procedures for
creating baseline maps of shellfish resources;

• Broad implications for new efforts in south-eastern states to assess status and
trends of these critical EFH (essential fish habitats) and to direct new
restoration/enhancement efforts;

• Rapid assessment techniques to monitor the status and thereby trends of oysters
and associated habitats for coastal managers to be able to understand how
environmental factors impact intertidal oyster reefs;

• Improvement of oyster reef management and restoration efforts in the
southeastern U.S.

• Development of GIS-based predictive models generated through automated
hyperspectral recognition for evaluating the productivity of various management
strategies including shellfish restoration plans and identifying water quality
problem areas.

7.0 Achievement and Dissemination
It is anticipated that the results of this work will be used to improve the

effectiveness of coastal management measures by creating cost-effective and accurate
baseline maps as well as improving evaluation/enhancement restoration efforts.  Results are
being made available to NERRS Managers and state and federal coastal agencies through
web access, presentations and publications, and the NERRS Coastal Training Program.
Information has been disseminated to user groups by:

• direct interactions with NERRS site Educational Coordinators;
• consultations with SCDNR’s Office of Fisheries Management personnel;
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• an Internet website linked to the web-based data and metadata dissemination server
maintained by the NERR Centralized Data Management Office;

• oral and poster presentations at professional meetings; and
• peer-reviewed scientific publications.

The significant scientific contribution of this effort has been to the remote sensing
and image processing communities through multiple presentations at national and
international scientific meetings and a forthcoming peer-reviewed journal article. Equally
important is the significance of this research to the marine and estuarine resource
management and research communities.  The research team has worked in partnership
with both the staff of the North Inlet – Winyah Bay NERR, the ACE Basin NERR,
NOAA’s Coastal Services Center, and the South Carolina Sea Grant Consortium to host a
Coastal Training Workshop.  The focus of this workshop was to introduce local and state
coastal resource managers and estuarine scientists to the potential role of remote sensing,
image processing and data fusion for applied shellfish management. In addition, the
workshop has been a mechanism to provide feedback to project researchers as to the
perceived benefits and issues associated with the use of remote sensing for resource
management. The workshop was held on June 27-28, 2003 in Georgetown, SC at the
North Inlet – Winyah Bay NERR.

The private-sector participants in this research are GeoMetrics, Inc., a privately
owned environmental engineering company with offices in Columbia and Myrtle Beach,
SC., and The Nature Conservancy, the world’s largest non-profit environmental
company. Both are using the findings of this work to further promote the development of
more accurate shellfish maps. Each organization has a long working relationship with
academia and government entities and understands that resource managers need better
and smarter tools for managing coastal resources. Both have successfully implemented
advanced mapping technologies for protecting critical estuarine habitat and will continue
to disseminate the results of this research through education and the training of
environmental and conservation partners.

Selected Papers and Publications:

Vincent, J.S., D.E. Porter, L.D. Coen, D. Bushek and S. Schill. 2003. Using
hyperspectral remote sensing to map and assess intertidal shellfish resources in the
southeastern US. Journal of Shellfish Research. Vol. 2(1):359. Reviewed abstract

Proceedings and Posters Presented at Conferences:

Vincent, J., D. Porter, L. Coen, D. Bushek, and S. Schill, 2005, “Using Automated
Feature Extraction To Classify Shellfish Resources In South Carolina”   2005 North
Carolina Geographic Information Systems Conference, March 3-4, Winston-Salem,
North Carolina

Vincent, J., D. Porter, L. Coen, D. Bushek, and S. Schill, 2004, “Using Automated
Feature Extraction for Mapping intertidal Shellfish RESOURCES Using Feature
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Analyst® for ArcGIS®,”   2004 Feature Analyst User Conference,  September 14-15,
Missoula, Montana

Vincent, J., D. Porter, L. Coen, D. Bushek, and S. Schill, 2003, "Assessing and
Mapping Shellfish Resources Using Spectral Mixture Analysis," Proceedings from the
2003 American Society of Photogrammetry and Remote Sensing Annual Convention
and Exposition, May 3-9, Anchorage, AK

Vincent, J.S., D.E. Porter, L.D. Coen, D. Bushek, S. Schill and J. Jensen. 2003.
Mapping intertidal shellfish resources using remote sensing.  17th International
Biennial ERF Conference. Seattle, WA. September 2003.

Vincent, J.S., D.E. Porter, L. Coen, D. Bushek and S. Schill. 2003. Using hyperspectral
remote sensing to map and assess intertidal shellfish resources in the southeastern
USA. National Shellfish Association Annual Meeting. New Orleans, LA. April 2003.

Vincent, J., D. Porter, L. Coen, D. Bushek, and S. Schill, 2003 “Assessing and
Mapping Shellfish Resources Using Hyperspectral Remote Sensing.”. Presented at
the NOAA Coastal Services Center GEOTOOLS 03 Conference, Charleston South
Carolina, 2003.

Vincent, J., D. Porter, L. Coen, D. Bushek, and S. Schill, 2002,
“Developing Hyperspectral Remote Sensing Methods to Rapidly Map and Assess
Intertidal Shellfish Resources,” (Poster). Presented at the 6th International
Conference on Shellfish Restoration. Charleston, South Carolina, 2002.

Vincent, J., D. Porter, L. Coen, D. Bushek, and S. Schill, 2003, “Assessing and
Mapping Intertidal Shellfish Resources Using Remote Sensing,” Presented at fall
meeting of the Southeastern Estuary Research Society, Conway, South Carolina,
2002.

Vincent, J., Cutter, S. 2001, “Dimensions of Social Vulnerability,” Presented at the
Annual Conference of the Association of American Geographers, New York, New
York, 2001.

Workshop Presentations:

“Deriving Shellfish Endmembers From Hyperspectral Imagery and Shellfish Spectral
Variability,”  Workshop on Remote Sensing of Intertidal Shellfish Habitats,
Sponsored by North Inlet-Winyah Bay and ACE Basin National Estuarine Reserve,
June 27-28, 2003 Georgetown, SC

Honors and Awards:

Best presentation award at the fall meeting of the Southeastern Estuary Research Society,
Conway, South Carolina, 2002.
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9.  Appendices
9.1 Secondary Spectral Signature Aggregation
    
 IN SITU SPECTRORADIOMETIC DATA  

  2ND LEVEL AGGREGATION  

   

CLUSTER DESCRIPTION SAMPLE
POINTS

 (BOB A-C are aggregated from BOB 1-3 sample sites)  

BOB A BOB1_1  

 BOB1_2  

 BOB2_1  
  BOB3_1  

BOB B BOB1_3  

 BOB1_4  

 BOB2_2  
  BOB3_2  

BOB C BOB1_5  

 BOB1_6  

 BOB2_3  
 BOB2_4  

 BOB3_3  

  BOB3_4  

 
(BOB D- G are aggregated from BOB4 sample
site)  

BOB D BOB4_1  

 BOB4_2  

 BOB4_3  
  BOB4_4  

BOB E BOB4_7  

 BOB4_8  

 BOB4_11  
 BOB4_12  

 BOB4_17  

 BOB4_18  

 BOB4_20  
  BOB4_22  

BOB F BOB4_9  

  BOB4_10  

BOB G BOB4_5  

 BOB4_14  
 BOB4_15  

 BOB4_16  

 BOB4_19  
  BOB4_21  
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9.2 Field Sampling Collection Dates
Sampling Schedule for 2002-2003  
   

Month Date Time Height
July, 2002 9th & 10th 1:34 PM / 2:21 PM -.01 / -0.03

August, 2002 20th & 21st 12:29 PM 0.3

September 19th & 20th 12:10 PM / 12:55 PM 0.6 / 0.5

October 2nd & 3rd 10:35 AM/11:36 AM 0.6 / 0.4

November 14th & 15th 09:21 AM /10:13 AM 1.1 / 1

December 30th & 31st 10:39 AM/11:36 AM 0 / -0.2

January, 2003 29th &  February 1st 11:54 AM / 2:17 PM -0.6 / -.04
 

February March 3rd & 4th 2:29 PM / 3:05 PM -0.2 /-0.2
 
March 31st & April 1st 1:19 PM / 1:55 PM 0.0 / -.01
 
April 14th & 15th 12:58 PM / 1:47 PM -0.3 / -0.7
 
May Monday, 12th 12:36 PM 0.2
 
June 24th & 25th 10:55 AM / 11:40 AM 0.3/ 0.3

July 9th & 27th 10:34 AM / 1:20 PM -.03 / 0.2
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9.3 Shellfish Strata Classification






