Managing and Monitoring Intertidal Oyster Reefs with Remote Sensing in Coastal South Carolina

A cooperative effort between:

Coastal Services Center
South Carolina Department of Natural Resources
City of Hilton Head Island

Overall Project Goals

- Update state's oyster database
- More efficient methodologies
- Some determination of oyster health
- Examine suspected impacts

Remote Sensing Expectations

- Perimeter and location of beds
- Better quantification of patch reefs in flats
- Location of fringing reefs
- Dead vs. "live" oyster
- Some strata information
- Field work still anticipated

Analog Image Source

- Metric aerial photography
- Multiple scales- 1:8K, 1:5K, 1:3K, and 1:2K
- Conventional color film (Kodak 2448) diapositives
- Metric mapping camera
- Stereo coverage

Digital Image Source

- GeoScanner mosaics and tiles
- 4 discrete spectral bands (B,G,R,NIR)
- Ortho-rectified imagery (<u>+</u> 3m horizontal accuracy)
- Tuneable bands (10nm)
- Illumination normalization
- 0.5 and 0.25m spatial resolution

Pilot Areas

- Lunar-low tide acquisition
- Low or offshore winds
- Variable environmental settings

Hamlin Creek - Charleston County

Broad Creek - Beaufort County

Evaluating Potential Methods

- Cost
- Complexity of approach
- Level of effort
- Sensor availability
- Level of detail
- Infrastructure requirements

Overall goal: Get the process into the hands of the most people who really know this resource.

Field Efforts

- Differential GPS controlled point observations
- GPS field digitization
- Calibration panels
- Ground photo comparison

View looking northeast

Manual digitization-

- Imagery Photography and GeoScanner (0.5m)
- Software ArcView Habitat Digitizer
 - Hamlin: Patch reefs especially labor

intensive.

Experience influences results

strongly.

Broad: Field work essential

Cost Benefit –

Effort – 7 Results – 8

Image segmentation -

- Imagery GeoScanner (0.5m)
- Software eCognition
 - Broad: Experience influences results strongly.

Cost Benefit –Effort – 7 Results – 7+

Unsupervised spectral clustering-

- Imagery GeoScanner (0.5m)
- Software ERDAS Imagine (ISODATA)
 - Hamlin: Three good clusters.
 - Good at patch reefs
 - Broad: Similar results to Hamlin.
 - More problems with shadows
 - Cost Benefit
 - Effort 4 Results 4

Supervised spectral clustering-

- Imagery GeoScanner (0.5m)
- Software ERDAS Imagine
 - Hamlin: Better results than unsupervised.
 - Broad: More confusion than

unsupervised.

AOIs pulling in mixed signatures.

Cost Benefit –

Effort – 5 Results - 5

Texture Analysis -

- Imagery GeoScanner (0.5m)
- Software Feature Analyst (ArcView Environment)
 - Broad Excellent results on patch reefs.

Encouraging results on fringing

reefs.

Hamlin: Same as Broad.

Cost Benefit –

Effort = 3 Results = 7

Derived products (NDVI, PCA) -

- Imagery GeoScanner (0.25m)
- Software ERDAS Imagine
 - Hamlin: NDVI adequate segmentation tool.

PCA only three components.

Broad: NDVI had promising results but

limited due to spartina response,

confusion.

Cost Benefit –

Effort = 7 Results = 8

Relative Detail

10 = all strata - all boundaries 3 = some boundaries

Relative Effort

10 = high skill, complex process, long time 1= low skill, simple, quick

Strata Summary

GeoScanner -

0.50 m = Washed shell, other oyster

Patch reefs easy, fringing reef more difficult

0.25m = Washed shell, several live strata Patch reefs easy, fringing reefs easy

Analog -

1:8K = Washed shell, more than one other oyster Patch reefs easy, fringing reef slightly more difficult

1:5K = Washed shell, several live strata
Patch reefs easy, fringing reefs easy

1:3K and 1:2K = Continued improvement on above.

Strata Examples

Washed Shell (Dead)

Low Profile

High Profile with Mud

High Profile

Summary

GeoScanner 0.5 meter captures reef boundaries
 90% of patch reefs
 70% of fringing reefs
 No strata except washed shell and other

GeoScanner 0.25 meter captures more fringing reefs and several strata

Challenges

Spartina with oyster mixed in

Textured mud vs. oyster

Diatoms affect oyster's appearance on imagery

Proposed Approach

Polygon Information (Feature Analysis)

- Extent/Configuration
- Fringe/Patch
- Good representation of the actual feature of interest – the "oyster reef"

Raster Information (Clustering)

- Pixel-by-pixel classification
 - Oyster red and yellow
 - Mud brown
- Precise representation of mix of features that makes an oyster reef
- Poor representation of the feature "oyster reef"

Integrated Data (management solution)
Boundary allows determination of reef erosion or expansion
Raster data allows determination of reef condition

NOAA Coastal Services Center

Summary

- Multi-spectral 0.25-meter imagery captures necessary detail to extract oyster reefs with multiple software
- Feature Analyst® creates single attribute polygonal data
- Imagine® ISODATA creates four unique classes
- Need to integrate these data sets for resource management and condition assessment

Strata Examples

Washed Shell (Dead)

Low Profile

High Profile with Mud

High Profile

