Subtidal and intertidal restored reefs in North Carolina

Jonathan H. Grabowski\(^1\), Sean P. Powers\(^2\), Pete Peterson\(^3\), and Hunter S. Lenihan\(^4\)

\(^1\)Gulf of Maine Research Institute/U. Maine-Darling Marine Center
\(^2\)Dauphin Island Sea Lab/University of South Alabama
\(^3\)University of North Carolina, Institute of Marine Sciences
\(^4\)University of California at Santa Barbara
Summary Outline

I. Brief synopsis of previous restoration research
 – Metrics quantified & major conclusions/lessons learned

II. Ongoing Investigations
 – Metrics quantified, preliminary data, & success status (initial assessment)
I. Historical Overview: Decline of the Eastern Oyster
1. Elevation of subtidal reef habitat above anoxic bottom waters

A

3 m Station

4 m Station

6 m Station

Water Depth

3 m

2.1 m

2.4 m

2.9 m

3.3 m

0 20 40 60

Tall reefs

Short reefs

B

Lenihan 1999
2. Oyster reef as essential fish habitat

- Fish/trap
- Crustaceans/trap
- Amphipods
- Grass shrimp
- Mud crabs

Hypoxia/anoxia

Lenihan et al. 2001
3. Restoring oyster reefs within the estuarine landscape

Grabowski et al. 2004 (in review)
Landscape study

• Design
 – Landscape effects
 – Restored (1997 vs. 2000) vs. natural reefs

• Metrics
 – Resident and transient fauna (cores, quadrats, gill nets, traps, popup nets)
 – Oyster settlement & adult densities (cores and quadrats)
 – Oyster reef complexity (quadrats)
II. Ongoing Research: Restoration Strategy

- Restoration efforts have targeted both the oyster fishery and reef ecosystem services

- “No harvest” or sanctuary reefs are central to proposed restoration efforts along the east coast

- Concern about disease dynamics has led to a movement to bring in exotic species
Reefs monitored

- Each area has 1-24 sanctuary reefs, age ranges from 2 to 12 yrs old.
- Harvestable areas created by NCDMF
- Natural (harvested) reef areas.
- Reef & oyster condition and disease monitored late spring and late summer

- Sanctuary included in this study
- Sanctuary not included in this study
Success criteria

• Density of living oysters
 – benchmark set relative to natural reefs (non-harvested when available)
• Spat recruitment
• Size-distribution (multiple age classes should be represented)
Status of Sanctuaries

- Highly successful
 - Neuse River < 4 m
 - West Bay (Shell)
 - Middle Marsh I & II

- Successful
 - West Bay (Marl)
 - Deep Bay
 - Wanchese
Status of Sanctuaries

Failing
- Bogue Sound (burial)
- Cape Hatteras (poor recruitment)
- Neuse River > 5 m (post-settlement loss due to poor water quality)
- Neuse River 4 m (burial?)
Alternative Substrates

• Small marl experimental reefs (1996 in West Bay)
 – Less successful settlement than adjacent shell reefs

• Large marl sanctuaries
 – Four built in 1996 throughout coastal NC
 – Difficult to harvest
 – Expensive and difficult to build
 – Limited success
Oyster - *P. marinus* relationships

- Disease prevalence and severity vs:
 - harvest status
 - age of non-harvested area
 - density of oysters

- Disease dynamics and variability in environmental setting of oyster reefs
Metrics

• Density of live & Dead Oysters
• Size-distribution
• Disease prevalence & severity (Dermo only)
• Physical/chemical parameters (Temp, Sal., D.O., velocity)
Current & Pending Funding

• Current funding
 – Sea Grant Oyster Disease Program
 • 2004-2005

• Importance experimental approaches
 – i.e., reef design & replicate reefs provide opportunities for longterm empirical studies
Disease severity 2002

Relative Frequency

May/June 2002
September 2002

Increasing severity
Disease vs. age of oyster reef

Disease prevalence

F = 17.28; p < 0.001

Disease severity

F = 12.42; p < 0.001
Sanctuary vs. harvested areas

Disease prevalence

- Harvest: Proportion infected
- Sanctuary: Proportion infected

- p < 0.001

Disease intensity

- Harvest: Infection Level (1-5)
- Sanctuary: Infection Level (1-5)

- p = 0.04
Disease prevalence vs. oyster density

\[r = -0.49; \quad p < 0.001 \]
Oyster condition, sanctuary status, and reef age

Condition Index = Weight/volume for oysters collected in early summer before disease level increases
Landscape setting vs. disease prevalence

Proportion of oyster with dermo
Within reef factors: reef height

Proportion of oyster with dermo

<table>
<thead>
<tr>
<th></th>
<th>Crest</th>
<th>Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion</td>
<td>0.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

p = 0.11

See also Lenihan et al. 1999, L&O Vol. 44
Feasibility of monitoring other variables

- Resident and transient fauna
- Filtering capacity
- Reproductive output
- Habitat dimensional complexity
- Shoreline/reef stability
- Indicator species
Summary & Conclusions

- Design, structure, and physical setting (e.g., landscape) of oyster reefs are critical in the success of restoration efforts.

- Restoration and management plans must consider and (when possible) test how actions may influence disease dynamics.

- Experimental investigations of the processes that structure oyster reef communities and determine successful provision of ecosystem goods and services should be investigated at large spatial scales (i.e., geographic variation).
Acknowledgements

Hunter Lenihan (UCSB)
Craig Hardy & Mike Marshall (NCDMF)
FerryMON & MODMON Projects (H. Paerl & R. Luettich)

Funding was provided by Sea Grant’s Oyster Disease Research Program and by the State of North Carolina