Loren Coen1, Dara Wilber2, Keith Walters3, Nancy Hadley1 and Ray Grizzle4

1 SCDNR, Marine Resources Research Institute, Charleston, SC
2 Marine Biology Program, College of Charleston
3 Marine Sciences Dept., Coastal Carolina University, SC
4 Jackson Estuarine Laboratory, University of New Hampshire
First dedicated group meeting since the effort at VIMS in April 1995.

OVERALL GOALS OF THE WORKSHOP

To identify an inclusive range of metrics appropriate for assessing oyster reef restoration, including the goal -- resource, habitat or both

- Select and evaluate a limited suite of the most useful or "cost-efficient" metrics at sites from NH, NJ, MD, VA, NC, SC, FL, AL, and LA using existing programs
- Including scale→ habitat complexity (interstitial space, rugosity), reef architecture, landscape issues (mm to km), B-P coupling, etc.
Objectives

- Review existing oyster restoration programs from NH-LA and related monitoring efforts
- Discuss and compile a list of possible restoration metrics, including novel approaches to evaluate success
- Present and discuss table feedback related to site ‘selection’, reference sites, project particulars, success criteria and related metrics
- Compare/contrast above methods appropriate for subtidal and/or intertidal populations
- Discuss and rank the value above approaches for sampling and monitoring/metrics and recommend a subset of these for larger group effort (Summary Doc)
- Develop new collaborative efforts to address needs and objectives (website, funding, etc.)
Participants

Attendees from:

- NH, NJ, MD, VA, NC, SC, FL, AL, LA, CA
- Hail from state (SCDNR) and federal (NOAA, ACOE) agencies, academia, NGOs (TNC, NC Coastal Federation)
- Areas with subtidal and/or intertidal reef systems
Current Oyster Restoration Programs

- Large- and small-scale projects
- Open and closed harvesting waters
- Some incorporate an experimental design
- Most have some monitoring component (some flexibility for midcourse corrections to adjust as needed?)

Study Design Basic Principle: Before-After-Control-Impact

- Control site
- Impact site

Shell Game

WARNING PROHIBITED AREA

The transportation of oysters, clams, and mussels from this area is prohibited. To avoid fines of up to $1000.00 or 30 days in jail for each violation. Relaying or transporting allowed by special permit only.

S.C. DEPT. OF HEALTH & ENVIRONMENTAL CONTROL

7/11/2003 11:02
Scale of Restoration Projects
(10s meters - acres)

Fisherman’s Island Reefs, VA

From M. Luckenbach
As Example, Sampling “Transient” Species

- Trawls
- Gill/ flume nets
- Long-lines
- Hook & line
- Seines
- Drop samplers
- Divers
- Underwater video
- Lift nets
Sampling “Resident” Fauna

From M. Luckenbach
Typical deployment of *in situ* fluorometers and seston sampling apparatuses upstream and downstream of an oyster reef.
Restoration Goal Primarily as “Fishing Reefs”
Inshore intertidal ‘reefs’ near Tampa, FL
Can We Use an Adaptive Management Approach?