Habitat: Oyster Reefs

Aswani K. Voley
Florida Gulf Coast University

In a nutshell:

- Oyster reefs provide a habitat for over 300 species, including fish and invertebrates, and play a major role in improving water quality and clarity via their filtration capacity, thereby removing phytoplankton, detritus, contaminants, and bacteria.

- People value oyster reefs as a place to find a large number and variety of fish. Oyster reefs stabilize sediments, protect against boat wakes, and provide a critical habitat for larval stages of fish and crustaceans. They also play a role as sentinels in contaminant monitoring.

- The damage to reefs from overharvesting, dredging, sedimentation, and altered freshwater inflows into the estuarine system can lead to a complete loss of oyster reefs in heavily-affected areas.

- Watershed alteration resulting from increasing human development and changes in salinity and contaminants has been implicated in the loss of oyster reefs in many areas of the world, including southwest Florida.

Eastern oysters, *Crassostrea virginica*, are natural components of estuaries along the eastern seaboard of the U.S., as well as the estuaries in the Gulf of Mexico, and were once abundant in the estuaries of southwest and southeast Florida (RECOVER, 2007). In the Caloosahatchee, Loxahatchee, Lake Worth, and St. Lucie estuaries (northern estuaries of the Everglades), oysters have been identified as a valued ecosystem component (Chamberlain and Doering, 1998a,b). The eastern oyster once supported a Native American subsistence fishery prior to and during early European colonization of North America (Quitmyer and Massaro, 1999) and today continues to be an important economic and ecological resource to coastal inhabitants (Ingle and Smith, 1949; Coen *et al.*, 1999; Gutierrez *et al.*, 2003). Along the southwest Florida coast, oysters exist within the estuarine and coastal areas as extensive reefs or isolated clusters or are attached to prop roots of red mangroves, often extending out at the base of mangroves (Figure 1).

The historical coastal complex of South Florida was distinctly estuarine with freshwater discharging through natural channels, as sheet flow across coastal wetlands and ground water flow, as general pore seepage, and as individual artesian springs emerging from karst pipes. As a result, conditions were favorable for the oyster to flourish and build small to extensive oyster banks and bars. In a few areas on the southwest coast, new oyster growths have shifted further inland along channels and interior bays. Oysters have an even greater temporal and spatial impact to south and southwest Florida because of the sedimentation associated with their reef development. Oyster reef development occurred along the southwest Florida coast over the last 3500 years, with reef development having a significant impact on coastal geomorphology. As reefs become emergent at low tide, they become the centers for red mangrove propagule settlement, and reefs transform into mangrove-forested islands. These islands entrap freshwater and predispose the
region to estuarine conditions (Parkinson, 1989; Wohlpert, 2007). In the present day, oyster reefs are extensive along the Charlotte Harbor to the Ten Thousand Islands, with reef development decreasing southeast of Chatam River towards Everglades National Park (Savarese et al., 2004; Volety et al., 2009). In estuaries north of Lostman’s and Broad rivers, oysters are also found on the prop-roots of red mangroves fringing the inner bays. In most of the estuaries, oyster reef coverage ranges between 5-20 acres (Volety and Savarese, 2001; Savarese et al., 2004; Volety et al., 2009).

Ecological Role of Oyster Reefs

Secondary Habitat and Trophic Transfer

Oysters provide habitat for other estuarine species that have significant recreational and commercial value. Grabowski and Peterson (2007) estimated that an acre of oyster reef sanctuary will result in ~$40,000 in additional value of commercial finfish and crustacean fisheries. Oysters are also ecologically important: they improve water quality by filtering particles from the water and serve as prey and habitat for many other animals (Coen et al., 1999). For example, oyster reefs have been identified as essential fish habitat for resident and transient species (Breitburg, 1999; Coen et al., 1999). Wells (1961) collected 303 different species that utilized oyster reefs and segregating species that used the reef primarily as shelter from those that depend on the reef for food. These organisms are then consumed by finfish and crustacean species that may be recreationally or commercially valuable (Grabowski et al., 2005; Grabowski and Peterson, 2007).

Harding and Mann (2001) found that transient generalist fishes do not rely exclusively on oyster reef habitats; therefore, it may not be appropriate to identify oyster reefs as essential fish habitat for these opportunistic fishes. According to the Magnuson-Stevens Fishery Conservation and Management Act, essential fish habitat is defined as “those waters and substrate necessary to fish for spawning, breeding, feeding, or growth to maturity” and fish is defined as “finfish, mollusks, crustaceans, and all other forms of marine animal and plant life other than marine mammals and birds” (USDOC, 1997). In general, oyster reefs provide habitat and shelter for many estuarine species (Zimmerman et al., 1989; Myers and Ewel, 1990; Breitburg, 1999), especially during periods of hypoxia (Lenihan et al., 2001). Harding and Mann (2001)
suggested that oyster reefs may provide a higher diversity and availability of food or a greater amount of higher quality food compared to other habitats. Oyster reefs restored on mudflats have higher juvenile fish abundances compared to reefs restored in vegetated areas that could potentially cause an increase in fish productivity in an estuary (Grabowski et al., 2005). The reefs can also be called essential fish habitat for oysters themselves, especially when reef height and quality and quantity of interstitial spaces for recruiting oysters are considered (Coen et al., 1999). Both of these characteristics increase the recruitment, growth, and survival of oysters on reefs (Coen et al., 1999).

Several species of fishes have been identified as oyster reef residents and include the naked goby (Gobiosoma bosc), Florida blenny (Chasmodes saburrae), striped blenny (Chasmodes bosquianus), feather blenny (Hypsobleniun bentz), skillefish (Gobiesox strumosus), gulf toadfish (Opsanus beta), and oyster toadfish (Opsanus tau) (Zimmerman et al., 1989; Wenner et al., 1996; Breitburg, 1999; Coen et al., 1999; Lenihan et al., 2001; Tolley and Volery, 2005; Tolley et al., 2006). These fishes use the oyster reef as a spawning and feeding habitat and as shelter from predators. Resident oyster reef fishes typically feed on benthic invertebrates such as amphipods, mud crabs, and grass shrimp but can also prey on benthic fishes (Breitburg, 1999; Lenihan et al., 2001). The naked goby, striped blenny, and skillefish attach their eggs to the insides of recently dead, clean, articulated oyster shells, and the oyster toadfish attaches its eggs to the underside of consolidated oyster shells (Breitburg, 1999; Coen et al., 1999). Resident reef fishes have been observed to swim quickly into the shell matrix of the oyster reef in the presence of a predatory fish or due to the sudden movement of a diver instead of swimming along the substrate surface or up into the water column (Coen et al., 1999).

Many transient fish species have been found on oyster reefs, and several are recreationally or commercially valuable, including Atlantic menhaden (Brevoortia tyrannus), tautog (Tautoga onitis), striped bass (Morone saxatilis), and Spanish mackerel (Scomberomorus maculatus) (Breitburg, 1999; Harding and Mann, 2001; Lenihan et al., 2001). Atlantic croaker (Micropogonias undulatus), Atlantic menhaden, bluefish (Pomatomus saltatrix), and striped bass are all found in greater abundances near oyster reefs compared to habitats such as sand bars (Harding and Mann, 2001). Many transient species, including speckled seatrout (Cynoscion nebulosus), weakfish (Cynoscion regalis), southern flounder (Paralichthys lethostigma), and Spanish mackerel have been found to eat reef resident fish species (Lenihan et al., 2001). Striped bass frequent reefs to feed on the benthic fishes (e.g., naked gobies) and crabs found in and around dead and live oysters (Breitburg, 1999; Harding and Mann, 2001). Juvenile striped bass also feed on naked goby larvae, one of the most abundant fish larvae in Chesapeake Bay tributaries during the summer (Breitburg, 1999). Other species of fish that feed on benthic invertebrates found on oyster reefs include spot (Leiostomus xanthurus) and black drum (Pogonias cromis) (Breitburg, 1999).

Fish are not the only species that utilize oyster reefs as habitat. Several species of decapod crustaceans are found on oyster reefs: Petrobiolus armatus, Panopeus spp., Eupyanopeus depressus, Menippe mercenaria, Alpheus heterochaelis, and Palaemonetes pugio (Zimmerman et al., 1989; Wenner et al., 1996; Coen et al., 1999; Luckenbach et al., 2005; Tolley and Volery, 2005, 2006). The xanthid crab (Panopeus herbstii) is a predator of the eastern oyster and is generally found along the boundaries of oyster reefs (McDermott, 1960; McDonald, 1982). In contrast, the flatback mud crab (E. depressus) is an omnivore that uses the narrow spaces between dead shells and living oysters as shelter from predation and to avoid dessication (Grant and McDonald, 1979; McDonald, 1982). The porcelain crab (P. armatus) is also abundant in oyster clusters and among dead articulated shells, reaching up into the water column perched atop oyster clusters to filter feed (Caine, 1975; Tolley and Volery, 2005). Penaeid and caridean shrimp such as grass shrimp (Palaemonetes sp.) are also frequently found on oyster reefs and serve as an important trophic link in both detrital and higher food webs (Coen et al., 1999). Grass shrimp also probably use the reef to avoid predators (Posey et al., 1999). In addition, many organisms use the oyster reef in varying ways. Benthic reef invertebrates, such as amphipods, are food for crabs and shrimp that then are eaten by resident and transient fish species. The oyster reef is also used as shelter by species such as resident mud crabs and grass shrimp that use the spaces in and around oysters to avoid predation.

In a comprehensive study, using carbon and nitrogen isotopes, Abeels (2010) examined the trophic transfer from the water column to various organisms in an oyster reef ecosystem. The organic matter sources, amphipods, and
wells are at the lowest level and are consumed by oysters, resident crabs, shrimp, and fishes. The oysters, crabs, and shrimp are then consumed by other resident crabs and fish species. Transient fish species such as _Lutjanus_ spp. come to the reef to feed on the resident crab, shrimp, and fish species. In a separate study, Wasno _et al._ (2009) investigated the trophic transfer from within the oyster reef community to 12 species of predatory fish. While the species of fish varied with season, the diet of fish caught during the wet and dry seasons did not differ significantly. Prey species belonging to the decapod crustaceans (_Eurypanopeus depressus_, _Panopeus_ spp., and _Xanthidae_ spp.) that are almost exclusive to oyster reefs occurred in the majority of stomachs and contributed to >43% of the relative importance index. Combined, results from both of these studies illustrate the importance of oyster reefs not only in oyster reefs serving as a habitat, but also in trophic transfer and secondary production.

Filtration

Oysters filter tremendous amounts of water while feeding (Newell, 1988). By filtering water column particulates, nutrients, sediment, and phytoplankton, oyster reefs increase light penetration to deeper layers, thus promoting the growth of SAV and, via denitrification, reduce anthropogenic nitrogen and minimize impacts of eutrophication (Grabowski and Peterson, 2007; Newell, 2004; Newell _et al._, 2002). For example, the decline in oyster populations in the estuaries along the eastern seaboard has coincided with increases in nutrient loading and a decrease in water quality (Paerl _et al._, 1998). This has resulted in ecosystem perturbations such as hypoxia and food webs dominated by microbes, phytoplankton, and nuisance pelagic species such as jellyfish (Breitberg, 1992; Jackson _et al._, 2001; Lenihan and Peterson, 1998; Paerl _et al._, 1998; Ulanowicz and Tuttle, 1992). Experiments have also indicated that oysters, through their filtration, increased light penetration by consuming algal production and increasing microphytobenthos (Dame _et al._, 1989; Porter _et al._, 2004). Field studies have demonstrated that oysters in North Carolina decreased chlorophyll-a levels in the water column by 10-25% and fecal coliform bacteria by 45% (Cressman _et al._, 2003). Increased nutrient loading and/or turbidity is extremely detrimental to SAV habitats. For example, nitrogen loading of 30 Kg N ha⁻¹ yr⁻¹ resulted in a decrease of 80-96% loss in SAV coverage in Waquoit Bay, Massachusetts. A 20% reduction in seagrass coverage in Chesapeake Bay resulted in an annual loss of $1-4 million of fishery value annually (Kahn and Kemp, 1985). In addition, a study by National Research Council (2004) estimated that a 20% improvement in water quality along the western shore of Maryland was worth $188 million for shore beach users, $26 million for recreational boaters, and $8 million for striped bass fishermen.

Mitigation of Wave Activity and Carbon Sequestration

In addition to providing habitat and secondary production, oyster reefs, with their calcareous shells and three-dimensional structure, also attenuate wave action and reduce erosion, thereby protecting other valuable habitats such as mangroves, sea grasses, and marshes in the estuarine environment (Henderson and O’Neil, 2003; Meyer _et al._, 1997). Oyster reefs also promote sedimentation and, therefore, benefits the growth of SAVs. Additionally, oysters also sequester CO₂ from the water column via formation of calcium carbonate shells and, thus, potentially reduce the concentration of greenhouse gases (Peterson and Lipcius, 2003).

Environmental Sentinels

Sedentary, benthic filter-feeding organisms, such as oysters, clams, and mussels, given their enormous filtration capacity, are particularly effective in taking up hydrocarbons via filtration and ingestion and are, therefore, susceptible to the negative effects of these contaminants. For this reason, bivalve mollusks, such as oysters and mussels, are used worldwide as sentinel organisms in coastal environments to examine trends of contaminant levels, as well as ecological impairment (NOAA Status and Trends Program; O’Connor and Laurenstein, 2006).

Attributes That People Care About

Oyster reefs in the SWFS support attributes of the marine environment that people care about. These attributes are directly related to ecosystem services provided by the southwest Florida coastal and marine ecosystem:
- Diverse fish, crustaceans, and other invertebrate populations
- Coastal erosion and boat wake mitigation
- Critical nursery and food habitat for recreationally- and commercially-important species
- Natural filter for phytoplankton, detritus, bacteria, and contaminants, resulting in enhanced water clarity and increased water quality
- Carbon sequestration

Diverse Fish, Crustaceans, and Other Invertebrate Populations

Oyster reefs are important locations for recreational fisherman in southwest Florida. For example, a recent study by Wasno et al. (2009) showed that fish such as sheepshead, snook, redfish, catfish, snapper, etc., obtain 43% of their diet (relative importance index) from four crustacean species that only live within an oyster reef. Live oyster reefs have higher diversity and species richness compared to reefs with dead oysters or no oysters (Tolley and Volety, 2005) and harbor a tremendous diversity of organisms (Grabowski and Peterson, 2007; Wells, 1961). Oyster reefs and adjoining seagrass beds and/or mangrove areas are commonly targeted by recreational fishermen and fishing guides in southwest Florida.

Coastal Erosion and Protection Against Boat Wakes

By reducing wave height, current velocities, and sediment resuspension, oyster reefs protect sea grasses and mangroves from erosion, saving these valued ecosystem communities.

![Oyster reef submodel diagram for the Southwest Florida Shelf.](image-url)
The reduction in turbidity, sedimentation, and erosion not only aids the ecology, but also has economic benefit derived from these habitats. Similar to sea grasses, oyster reefs are self-perpetuating and require little or no time or expense in maintaining them.

Natural Filtration

The biggest and most important benefit of oyster reefs to an ecosystem is their tremendous filtration capacity. According to Newell (1988), individual oysters filter 4-40 L/h. This filtration removes detritus, phytoplankton, contaminants, and bacteria, resulting in greater light penetration, thus promoting the growth of seagrasses and benthic microalgae. Sequestration of nitrogen via removal of organic matter from the water column also decreases impacts of eutrophication and promotes denitrification.

Carbon Sequestration

Oysters secrete calcium carbonate shells from seawater, thereby removing CO$_2$ from the water column (and thus atmosphere) and contributing to a reduction in greenhouse gases. The shells are insoluble and, thus, form a carbon sink in the coastal and estuarine realms.

Attributes That We Can Measure

Given the ecological and economic benefits of oyster reefs, monitoring of oyster reefs by various local, state, and federal agencies has been in place for many years. In southwest Florida, a monitoring program to support the Comprehensive Everglades Restoration Plan (CERP) includes monitoring of oyster responses (RECOVER, 2007). Typical oyster responses that are measured include:

- Spatial extent
- Living density
- Larval recruitment
- Growth and survival of juvenile oysters
- Intensity and prevalence of diseases
- Reproductive condition

Spatial Extent

Along the southwest Florida estuaries and coast, the distribution and coverage of oyster reefs is influenced by salinity, substrate and food availability, larval recruitment, as well as the timing and duration of freshwater inflows into the estuaries (Volety, 2008; Volety *et al.*, 2009). Recent decades have witnessed declining oyster populations throughout the world. For example, Beck *et al.* (2011) estimated that oyster reefs are at less than 10% of their prior abundance and that ~85% of oyster reefs have been lost globally. Such decreases have coincided with decreases in water quality and clarity (Newell *et al.*, 1988). Some of the main reasons for declines in oyster reef abundance and distribution include diseases (Burreson and Ragone-Calvo, 1996; Soniat, 1996; Volety *et al.*, 2000), overharvesting, dredging, altered watershed, and salinity (Volety *et al.*, 2009).

Living Density

The density of living oysters varies between estuaries (100-4000+ oysters/square meter). Live oyster density, an indirect measure of reef productivity, also varies considerably along an estuarine salinity gradient and in response to various stressors that affect oyster growth and survival. Patterns attributable to human alterations in freshwater flow were detected previously in the Blackwater and Faka Union estuaries in the Ten Thousand Islands (Volety and Savarese, 2001; Volety, 2007). Similarly, oyster-living density varies with yearly freshwater inflows in the Caloosahatchee Estuary (Volety *et al.*, 2010). Since salinity has profound influence on spat recruitment, predation, survival, and fecundity (Volety *et al.*, 2009, 2010), differences in the living density of oysters between estuaries is not surprising. In addition to salinity, depending on the amount of freshwater that flows into the estuaries due to regulatory freshwater releases and/or watershed runoff, this may result in physical flushing of larvae to downstream locations, where substrate may be limited. For this reason, for relatively unaltered estuaries, the focus of oyster reef development occurs at mid-estuary, where salinity and food conditions tend to be favorable for oysters (Volety and Savarese, 2001; Savarese and Volety, 2008; Volety *et al.*, 2010).

Larval Recruitment

Oyster spat recruitment is typically monitored using old adult oyster shells strung together by a weighted galvanized
wire or settling plates made of calcium carbonate cement and deployed at a sampling location. Oyster spat settlement is monitored monthly by counting the number of spat settled on the underside of strung shells (or plate), and spat settlement is expressed as the number of spat settled per oyster shell per month. Oysters reproduce during late spring-early fall in southwest Florida, and monitoring of spat recruitment is typically conducted between the months of May and October in southwest Florida estuaries (Volety, 2008; Volety et al., 2009; Volety et al., 2010). Since oyster reproduction and spat recruitment are influenced by salinity, temperature, food availability, and substrate quality, any environmental perturbations will negatively impact spat recruitment and survival and, hence, next year’s class of oysters, resulting in poor living density of oyster during subsequent years.

Growth and Survival of Juvenile Oysters

Juvenile oysters grow at a faster rate than adult oysters and, thus, make excellent indicators to measure the role of water quality on the survival and growth of oysters (Volety et al., 2010). Juvenile survival and growth is influenced by salinity, temperature, food quality and quantity, predators, and dissolved oxygen (Shumway, 1996). Higher salinities typically attract more predators and disease and, thus, oysters are more susceptible to predation and mortality (White and Wilson, 1996). To discriminate between growth and survival of juvenile oysters due to water quality and/or predation, juvenile oysters are deployed in open and closed bags and their survival and growth monitored (Volety et al., 2010). The responses of juvenile oysters placed in closed wire-mesh bags indicate growth and/or mortality due to water quality; responses of oysters in open cages denote growth and/or mortality due to predation and water quality, thus giving us an estimation of the role of predation in these estuaries. These results are extremely useful in modeling or estimating oyster populations at various salinity and inflow regimes. This method was successfully employed by Volety et al. (2003) in the Caloosahatchee River and estuary and by Volety and Savarese (2001) in the Ten Thousand Islands.

Adult oysters normally occur at salinities between 10 and 30‰, but they tolerate salinities of ~2 to 40‰ (Gunter and Geyer, 1955). Occasional, short pulses of freshwater inflow can greatly benefit oyster populations by reducing predator (e.g., oyster drill, whelk) and parasite (e.g., *Perkinsus marinus*) impacts (Owen, 1953), but excessive freshwater inflow may kill entire populations of oysters (Gunter, 1953; Schlesselman, 1955; MacKenzie, 1977; Volety et al., 2003; Volety et al., 2010; Bergquist et al., 2006). Therefore, controlled freshwater releases could be used in adaptive management to mitigate disease and predation pressure on oysters.

Intensity and Prevalence of Disease

For nearly 50 years, eastern oyster populations along the east and Gulf coasts of the United States have been ravaged by the highly pathogenic protozoan parasite, *Perkinsus marinus* (aka Dermo; Mackin, 1962; Andrews and Hewatt, 1957; Andrews, 1988; Burreson and Ragone-Calvo, 1996; Soniat, 1996). Higher salinities and temperatures significantly enhance *P. marinus* infections in oysters (Andrews, 1988; Burreson and Ragone-Calvo, 1996; Chu and Volety, 1997; Soniat, 1996; Volety et al., 2003, 2009). The presence and intensity of the disease organism is typically assayed using Ray’s fluid thioglycollate medium technique (Ray, 1954; Volety et al., 2000; Volety et al., 2003, 2009). Samples of gill and digestive diverticulum are incubated in the medium for four to five days. *P. marinus* meronts enlarge in the medium and stain blue-black with Lugol’s iodine, allowing for visual identification under a microscope. Prevalence of infection is calculated as the percentage of infected oysters (Mackin, 1962). The intensity of infection is recorded using a modified Mackin scale (Mackin, 1962) in which 0 = no infection, 1 = light, 2 = light-moderate, 3 = moderate, 4 = moderate-heavy, and 5 = heavy.

Temperature and salinity profoundly influence the disease susceptibility of oysters, with higher temperatures and salinities resulting in a higher prevalence and intensity of *P. marinus* infections (Chu and Volety, 1997; Soniat, 1996; La Peyre et al., 2003; Volety, 2008; Volety et al., 2009). This trend has been confirmed in other southwest Florida estuaries, including those in the Ten Thousand Islands (Volety and Savarese, 2001; Savarese and Volety, 2008). Oysters with infections above moderate levels quickly die out if temperatures and salinities remain high. Given that >80% of infected oysters can encounter mortality (Andrews, 1988), the impact of salinity on the survival of adult oysters cannot be underestimated. During warmer months...
(summer-fall), southwest Florida estuaries experience heavy rainfall and watershed runoff, as well as regulatory freshwater releases that depress salinities. During winter, when temperatures are cooler, there is little or no rainfall or watershed runoff, resulting in high salinities and, at times, hypersaline conditions within the estuary. The antagonistic effects of high temperature/low salinity (summer), and low temperature/high salinity (winter) keeps disease in check at low to moderate levels; however, in the absence of freshwater releases during winter, salinities become high and oysters are prone to disease, as well as predation. Similarly, if high volumes of freshwater are released, especially for extended periods (>1-2 weeks), salinities tend to be depressed, resulting not only in mitigation of the parasite and predators, but also in increased mortality of larval, juvenile, and adult oysters.

Reproductive Condition

The reproductive condition is used to estimate fecundity or the potential of oysters to engage in normal reproductive activity (or lack thereof). Histological analysis is typically used to examine gonadal state and reproductive potential of oysters and gametogenic stage identified under a microscope according to Fisher et al. (1996) and the International Mussel Watch Program (1980). Gonadal portions of the sections were examined by light microscopy to determine gender and gonadal condition. This method has been previously used successfully to identify reproductive patterns of oysters in southwest Florida estuaries (Volety and Savarese, 2001; Volety et al., 2003) and to recommend alteration of inflow patterns to ensure survival of oyster spat during the reproductive season.

It appears that oysters in the Caloosahatchee Estuary continuously spawn from April to October, a result corroborated by changes in the condition index and spat recruitment at various sampling locations (Volety et al., 2010). This trend contrasts with that of oysters from the northeastern United States (Shumway, 1996) and Chesapeake Bay (Southworth et al., 2005), where reproduction of oysters is limited to a few months in the summer (August-September). This reproductive trend of oysters in southwest Florida estuaries has significant management implications. For example, minimizing large freshwater releases during summer-fall, when oysters are spawning in the estuary, would result in favorable salinity conditions and larval retention within the estuary, resulting in higher recruitment and possibly higher adult densities in subsequent months. Due to high freshwater flows during summer months, larvae are flushed to downstream locations where substrate may not be available. High spat recruitment at downstream locations due to flushing activity may not be beneficial to the system as a whole, as higher salinity conditions at these locations attract predators and diseases (Shumway, 1996; White and Wilson, 1996; Volety, 2007; Volety et al., 2009), resulting in mortality. Decreasing the duration and magnitude of high flows during summer (wet) and releasing base flows during winter (dry) will minimize extreme salinity fluctuations that are detrimental to oysters.

Drivers of Change in Oyster Reefs

Pressures are the direct cause of change in the ecosystem. The source of pressures affecting oyster reefs beds in the SWFS area, on a local scale, include coastal development and freshwater inflows into the estuaries due to regulatory releases and/or watershed runoff, increased sedimentation, input of excessive nutrients, and contaminants. On a more regional or global scale, pressures result from regional inputs of nutrients, which contribute to a general increase in nutrient concentrations in the coastal ocean, climate change, and the effects of rising carbon dioxide concentrations on ocean water chemistry. These pressures have a tremendous impact on the development of oyster larvae and the formation/dissolution of calcium carbonate shell under low acidic conditions.

Coastal Development

Local-scale alterations in the watershed from coastal/watershed development results in run-off of nutrient- and contaminant-laden sediment into rivers and estuaries. This contributes to the development of macroalgae and harmful algal blooms. Blooms smother the oyster beds and deplete oxygen when they decompose and negatively impact oysters and their early life stages with biotoxin production (Leverone et al., 2006, 2007). Contaminants also negatively impact oysters by increasing disease susceptibility and survival (Chu and Hale, 1994). Dredging and filling of coastal areas for navigation and utilization of shell in construction also depletes suitable substrate and negatively affects oyster reef development.
Climate Change and Sea-Level Rise

Carbon dioxide levels in the atmosphere have been rising since the beginning of the Industrial Revolution. Present day atmospheric CO$_2$ concentrations of 385 ppm represent a nearly 30% increase over pre-industrial values, with concentrations forecast to surpass 700 ppm by the end of the century (IPCC, 2007). These increases in CO$_2$ concentrations are believed to cause increases in atmospheric and oceanic temperatures, changes in the carbonate chemistry of seawater and widespread melting of snow and ice, and rising sea levels (IPCC, 2007). Recent studies have shown that the CO$_2$ trends anticipated by the IPCC (2007) study can have significant impacts on the calcification rates and physiology of planktonic and benthic organisms, including shellfish (Fabry et al., 2008). In fact, the impact of acidic waters on bivalves has been investigated since the 1940s (Loosanoff and Tomers, 1947). More recently, reduced CO$_2$ levels have been shown to decrease calcification (Gazeau et al., 2007; Kurihara et al., 2009; Miller et al., 2009), reduce shell growth (Berge et al., 2006; Michaelidis et al., 2005), and increase mortality (Talmage and Gobler, 2009) in different species and life stages of marine bivalves.

Mechanisms of Change in Oyster Reefs

The principal threats to oyster reefs in the SWFS mostly occur through four pathways: watershed development and input of nutrients and contaminants; freshwater runoff from the watershed and regulatory freshwater releases; increased sedimentation; and dredging and removal of substrate required for larval settlement and reef growth.

Oyster Reef Status and Trends

Anecdotal evidence, as well as archived photographic evidence, suggests that the coverage of oyster reefs in southwest Florida has drastically decreased. Current coverage of oyster reefs in the Caloosahatchee Estuary-Ten Thousand Islands is about 0.1-1% of the accommodation space (as defined by the area where salinity is favorable for oyster growth). Healthy estuaries along the Gulf of Mexico have oyster reef coverage of about 1-5% accommodation space (RECOVER, 2009; Volety et al., unpublished results). The situation along the southwest Florida coast follows a general decline in oysters worldwide. Oyster reefs are at less than 10% of their prior abundance in most bays and ecoregions. It has been estimated that there is an 85% loss of oyster reef ecosystems globally (Beck et al., 2011). Most of the loss is due to timing, duration, and quantity of freshwater inflows into the estuaries, as well as increased sedimentation and contaminants resulting from watershed runoff. With a reduction and redirection of freshwater Everglades discharge (along with many other changes to the coastal wetlands), many of these historical oyster bars and banks have been lost.

Topics of Scientific Debate and Uncertainty

While the relationship between salinity and $P.$ marinus prevalence and intensity has been well established through laboratory (Chu and Volety, 1997; La Peyre et al., 2003) and field studies (Burreson and Ragone-Calvo, 1996; Soniat, 1996), the importance of duration, frequency, and magnitude of freshwater inflows into estuaries and how they influence $P.$ marinus infections is not clear. In addition, the role of freshwater inflows on the early life stages of oysters is unclear and is necessary for managing freshwater inflows into southwest Florida estuaries. While it has been shown that contaminants affect immune responses (Anderson, 1993; Pipe and Coles, 1995), energy reserves (Capuzzo, 1996), and exacerbates $P.$ marinus infections in oysters (Chu and Hale, 1994; Anderson et al., 1996), their effects on the early life stages and, especially, on the F-2 generation is unclear. Similarly, the effects of harmful algal blooms on the survival and metamorphosis of early life stages of oysters and long-term reproductive impacts on oysters are unclear. Recent studies investigating the effect of elevated CO$_2$ levels under scenarios of predicted global climate change have yielded contrasting results depending on the species examined. Little or no information exists on the effects of elevated CO$_2$ levels in seawater, and how it may impact growth and survival of larval oysters is unclear.
References

Grant, J., and J. McDonald. 1979. Dissociation tolerance of *Eurypanopeus depressus* (Smith) (Decapoda: Xanthidae) and the exploitation of microhabitat. Estuaries, 2(3):172-177.

