THE EXPOSED SURFACE AREA TO VOLUME RATIO: IS SHELL MORE EFFICIENT THAN LIMESTONE IN PROMOTING OYSTER RECRUITMENT?

Kelsey Kuykendall¹, Paula Moreno¹, Eric Powell¹, Thomas Soniat², Susan Colley², Roger Mann³, Daphne Munroe⁴

¹University of Southern Mississippi ²University of New Orleans ³ Virginia Institute of Marine Science ⁴ Rutgers University

National Shellfish Association 106th Annual Meeting Jacksonville, Florida 2014

INTRODUCTION

Current Local Restoration Projects:

- \$11 million in MS Sound
 - Fall 201220,372 cuyd over 200 ac
 - Spring 201354,162 cuyd over 542 ac86,703 cuyd over 688 ac
- DWH Oil Spill Restoration Funds: \$1 Billion

Limestone is selected over shell:

- Price
- Availability
- Ability to attract spat

- After planting cultch only a portion is available for recruitment
- Available recruitment area = Exposed Surface Area = Surface Area/Number of faces
- Shell vs Limestone

Different surface area to volume properties = differential settlement opportunities

No available studies quantified expSA of shell and limestone

How does the exposed surface area (expSA) of shell compare to that of limestone?

Cubic yards with a mixture of shapes

As a piece is selected and added to the cuyd, its expSA, volume and associated void volume is summed

SIMULATION RESULTS

Metric	Oyster Shell	L	imestone	
Mean Surface Area (m²yd-³)	85.2	\triangleleft	163.1	N = 1 000
Mean Exposed Surface Area (m²yd-³)	42.6	>	32.0	N = 1,000

- expSA of shell = 1.35(expSA of limestone)
 - Shell contributes more exposed surface area
 - Limestone contributes more total surface area

SIMULATION RESULTS

How does limestone perform?

Particle Type	Mean SA (m²yd-³)	Mean expSA (m²yd ⁻³)	Mean Weight (MTyd ⁻³)	Void Volume (yd³)
#57 (Smaller)	194.2	38.2	1.45	0.56
#4 (Larger)	137.1	26.7	1.29	0.61
All Pyramidal	111.0	24.9	1.27	0.61
All Prismatic	211.5	42.3	1.63	0.50
All Cubic	235.3	39.2	1.37	0.50

Conclusion: size and shape matter

SIMULATION RESULTS

How does whole oyster shell perform?

Particle Type	Mean SA (m²yd-³)	Mean expSA (m²yd ⁻³)	Mean Weight (MTyd ⁻³)	Void Volume (yd³)	
Oyster Shell	85.2	42.6	0.57	0.81	
#57 (Smaller)	194.2	38.2	1.45	0.56	
#4 (Larger)	137.1	26.7	1.29	0.61	
All Pyramidal	111.0	24.9	1.27	0.61	
All Prismatic	211.5	42.3	1.63	0.50	
All Cubic	235.3	39.2	1.37	0.50	

Conclusion (assuming same cost by weight or volume):

- By weight, oyster shell always performs better
- By volume, performance is similar IF limestone particle shape/size chosen wisely

CAVEATS

- Assumption: exposure of only 1 surface of the shell
 - shell has a lower degree of packing
 - some portion of both faces very likely available
 - expSA underestimated for oyster shell

- Assumption: no sedimentation
 - even a dusting of sediment prevents recruitment
 - higher packing of limestone = more susceptible to sedimentation

EXPERIMENTAL APPROACH

What does a real plant look like?

RESULTS

How did limestone perform at Three Mile?

Particle Type	Mean SA (m²yd ⁻³)	Mean expSA (m²yd ⁻³)	Mean Weight (MTyd ⁻³)	Void Volume (yd³)
Whole Oyster	89.1	44.5	0.54	0.81
Limestone ≥5 cm3	276.6	48.9	1.61	0.51
All Limestone	441.4	79.9	1.64	0.50

Conclusion:

- Limestone performance ≈ Oyster shell performance
 - better if all small limestone particles are included
- Limestone particles were small and mostly cubes and prisms (The Perfect Plant)

RESULTS

How would oyster shell fragments have performed at Three Mile?

Particle Type	Mean SA (m²yd ⁻³)	Mean expSA (m²yd ⁻³)	Mean Weight (MTyd ⁻³)	Void Volume (yd³)
Shell Fragments	630.8	315.5	2.01	0.41
Whole Oyster	89.1	44.5	0.54	0.81
Limestone ≥5 cm3	276.6	48.9	1.61	0.51
All Limestone	441.4	79.9	1.64	0.50

- Shell fragments
 - add significant expSA and weight to the cubic yard
 - outperform all limestone shapes and sizes and also whole oyster shell
- performance differential is highly significant by weight or volume

CONCLUSIONS

- What to plant to enhance recruitment?
 - Always plant shell fragments if you can
- Whole shell and limestone can perform similarly
 - Limestone can perform less well than shell
 - Choose limestone wisely
- Remember: Limestone packing suggests performance declines faster than shell if sedimentation occurs

CONCLUSIONS

- What to plant to expand a reef?
 - Limestone is taphonomically resistant
 - Only shell yields surface complexity
- We suggest a limestone base but shell ultimately is necessary

FUTURE RESEARCH

- Sensitivity of the model to composition change
 - manipulate proportions of shape types selected

- Taphonomic and degradation effects of cultch material
 - use of dissolution trays/containers
- Alternative deposition of cultch materials
 - use of shell vs limestone suspended strings

ACKNOWLEDGEMENTS

Geology Department