POTENTIAL FOR UTILIZATION OF REMOTE SENSING TECHNIQUES IN QUANTIFYING AND CHARACTERIZING INTERTIDAL OYSTER HABITAT IN SOUTHWEST FLORIDA

Michael Savarese and S. Gregory Tolley

Florida Gulf Coast University, Fort Myers, Florida

Southwest Florida's Estuarine Problems

- Part of Greater Everglades system & Comprehensive Everglades Restoration Plan (CERP).
- Water quality, quantity, & timing due to water management.
- Water management for potability, storm water, & agriculture.
- Altered salinity: too much, too little, disrupted seasonality.

Southwest Florida

Caloosahatchee

Estero Bay

Rookery Bay

Ten Thousand Islands

Research Questions

- How to gauge the environmental health of SWFL estuaries?
- How to establish estuarine restoration targets?
- How to monitor restoration effectiveness & adaptively manage restoration?

Oysters as Metrics of Estuarine Health

- Use various aspects of oyster physiology and ecological distribution.
- Reefs primarily intertidal, upper meso- to polyhaline (15-30 ppt).
- Reefs occur in inner-middle regions of the "inner bays".
- Importance for development of coastal geomorphology through late Holocene.

Germane to Greater Everglades Restoration

- Results used to plan and monitor restoration in 3 CERP projects.
- Results used to define formal "performance measures".

Research Design I:

- Distribution of oyster reefs & reef living density as two of many measures.
- Other aspects:
 - Oyster reproduction.
 - Oyster growth.
 - Disease susceptibility.

Research Design II: Spatial Homologue Approach

- What is a spatial homologue: similar geomorphology & hydrology.
- Assume spatial homologues among the 3 estuaries have same water quality, oyster health & ecology, & faunal assemblages in absence of human alteration.
- Compare: water quality; oyster distribution, growth, & health.

Methodology I: Oyster Reef Mapping

- Photograph reefs from helicopter during extreme low tide.
- Two sets of photographs: large scale for perspective; small scale for size.
- Transfer by hand to a GIS layer.

Methodology II: Living Density

- Count living oysters within quadrats.
- Survey middle intertidal contour; height of highest living density.
- Randomly sample a number of quadrats along this contour.

Faka-Union: "Want to buy some swamp land in Florida?"

- Land development planned by Gulf American Corporation -- creation of Southern Golden Gate Estates.
- Problem: Excessive freshwater; 115,000 extra acres of wetland drained into estuary.
- No flow control structures.
- CERP project for restoration.

Southern Golden Gate Estates

- 813 miles of roads
- 138 miles of canals

All water flows out of one canal into Faka Union Bay

Reef Distribution in Blackwater

Reef Distribution in Faka-Union

Distribution of Oyster Reefs

Locat ion	Reef Area (m ²)	Accommo dation Space (m ²)	Perce nt Reef Coverage
	(111)	Space (III)	Coverage
Faka-Union	24,270	2,334,685	1.04%
Henderson	47,656	2,956,326	1.61%
Blackwater	35,365	2,034,695	1.74%

- Within Blackwater & Henderson reefs dominate at homologues 2, 3, & 4.
- Within Faka-Union reefs dominate at homologues 4 & 5. No living reefs at homologue 1 (relict reefs occur).

Oyster Living Density

Implications

- Target water flow to establish right conditions for reef development.
- Results used for restoration design and planning.
- Can assess restoration performance & adaptively manage restoration.

Caloosahatchee River & Estuary

Problem: System is highly altered and highly managed

Result: Altered freshwater input (timing and amount)

Downstream effects: Salinity structure, water quality and residence time

Ecological implications: Distribution and abundance of estuarine organisms; downstream production

Project Goals: Use data from oysters and oyster-reef communities to guide management targets for minimum and maximum flows as well as the timing of freshwater releases

Complications & Limitations

- Helicopter photographic surveys costly & time intensive.
- Reefs extend into shallow subtidal depths:
 - Can't always see subtidal edges.
 - Waters are tanin-rich, opaque.
 - SAV can look like oyster clumps when subtidal.
- Photography accurately positions reefs but not size.
- Living density varies drastically & difficult to visualize from photos.
- Can't distinguish reef substrate or "strata" types.
- Other techniques?