Florida Oyster Reef Restoration Workshop St. Petersburg, 14-15 March 2007

Using *In situ* **Fluorometry to Quantify Seston Removal Rates by Oyster Reefs**

Ray Grizzle¹, Jennifer Greene¹, and Loren Coen²

¹Jackson Estuarine Laboratory & Department of Zoology, University of New Hampshire ²Marine Resources Research Institute, South Carolina Department of Natural Resources

Materials Processing Overview

(Dame 1993)

Background

Bivalves in general...

- Seston uptake (removal of suspended particulates via the pumping/filtration/feeding process) has been demonstrated theoretically and <u>in the laboratory</u> for many species of suspension-feeding bivalve molluscs.
- Seston uptake has been measured <u>in the field</u> in multiple study areas for a few species of bivalves (e.g. blue mussels, zebra mussels).
- •Water flow variations, sediment re-suspension, and other factors complicate field measurements of seston uptake.

Background

Oysters in particular...

- The ability of oysters to remove substantial amounts of suspended particulates (seston uptake)—and thereby potentially improve water quality—is often cited as a reason for restoration projects.
- Empirical demonstration in the field of this ability for restored or natural oyster reefs, however, has not been convincingly demonstrated.

"Standard Methods" for Field Measurement of Seston Uptake by Oysters

- Dame et al. (1992): pumped water samples, laboratory analysis of seston
- Wilson-Ormond et al. (1997): pumped water samples, laboratory analysis of seston
- Cressman et al. (2003): dipped water samples, laboratory analysis of seston
- Nelson et al. (2004): dipped water samples, laboratory analysis of seston

Rationale for *In Situ* **Methods**

- Standard methods for measuring seston uptake are cumbersome and costly.
- *In situ* methods potentially represent substantial cost savings as well as <u>greatly increased spatial and</u> <u>temporal resolution</u> of uptake processes.
- Empirically quantifying seston uptake is needed as a success metric for ongoing restoration projects.

In Situ Fluorometry Apparatus

One of two identical units, total cost per unit ~\$5,000.

Typical Set-up for Field Measurements

Pre-2005 Data for Three Bivalve Species, Four Different Localities

Table 1. Summary of enviro	onmental chara	acteristics,	bivalve population	data, and other inform	nation for all	study site	s.			¥	♦	♦		
Species	Bivalve Density (#/m ²)	Mean Shell Size (mm)	Location	Site	Date	Tide	Sampling Duration (hr)	# of S <i>In situ</i> Fluoro	Samples Pumped Water	Water Depth Range (m)	Flow Length (m)	Flow Speed Range (cm/s)	<i>In situ</i> Fluoro (% uptake)	Laboratory Chloro <i>a</i> (% uptake)
Mytilus edulis	526	45.0	New Hampshire	Albacore Channel	11/13/01	Ebb	1.4	4	4	0.32-0.47	63	12.6-27.8	27.8	11.8
Mercenaria Mercenaria	285	19.4	Virginia	Clam Bed 1	6/5/02	Flood	0.8	5	4	0.35-0.42	9	10.0-13.0	35.3	16.1
Mercenaria Mercenaria	285	19.4	Virginia	Clam Bed 2	6/6/02	Ebb	0.4	3	0	0.61-0.65	44	3.0-5.0	62.3	
Crassostrea virginica	61	36.8	Florida	CANA Reef 1	6/10/02	Flood	1.0	7	0	0.28-0.34	12	12.0-17.0	11.4	
Crassostrea virginica	122	54.9	Florida	CANA Reef 2	6/10/02	Ebb	0.7	4	0	0.18-0.19	20	3.0-4.0	37.4	
Crassostrea virginica	76	50.5	Florida	CANA Reef 3	6/11/02	Ebb	1.8	8	6	0.40-0.50	20	4.0-6.0	10.7	11.9
Crassostrea virginica	134	47.0	Florida	CANA Reef 4	6/12/02	Flood	1.3	4	0	0.13-0.18	17	8.0	26.3	
Crassostrea virginica	2538	26.7	South Carolina	Palmetto Reef 1	10/18/04	Flood	1.7	11	3	1.0-1.5	6	3.5-11.5	-2.7	-5.3

(from Grizzle et al. 2006)

1 1 1

Recent (2005-06) Studies on SC Reefs

Seston Uptake Model Predictions and Measured (in situ fluorometry) Uptake - Summary of 2004-2006 SC Studies

				Assumed	Reet	Water Column					
		Mean Bivalve	Mean Bivalve	Individual	Bottom	Cross-Section	Water Flow	Total Water	PREDICTED Total	PREDICTED	MEASURED %
		Density	Size (Shell L	Clearance (B;	Area	Over Reef	Speed	Flow Rate	Clearance (AxBxC;	% Cleared	Cleared (Seston
Date	Site	(A; #/m ²) ¹	or H, mm)	L/ind/hr) ²	(C; m ²) ³	(D; m ²) ⁴	(E; cm/s) ⁵	(DxE; m ³ /hr)	m³/hr)	(Seston Uptake)	Uptake)
				"low gear"							
10/18/04	Palmetto Restored R1	2538	26.7	0.6	15	3.4	8.2	1004	23	2.3	-2.8
10/19/04	Palmetto Restored R1,R2,F	2909	31.7	0.7	234	3.1	13	1451	476	32.8	6.9
05/16/05	Woodland Ck	1662	39.6	0.8	75	1.90	4.7	321	100	31.0	22.1
05/17/05	Oak Ck SCORE (2003)	1100	28.0	0.6	15	0.80	8.5	245	10	4.0	3.5
05/17/05	Oak Ck SCORE (2001)	1500	44.0	0.9	15	1.10	13.5	535	20	3.8	1.9
05/19/05	ACE Clam Pen	412	39.4	0.8	46	1.40	5.0	252	15	6.0	23.1
05/19/05	ACE Recycled Shell	2931	22.5	0.5	28	1.60	10.0	576	41	7.1	14.9
06/07/06	Store Ck#1-Natural	217	31.8	0.7	72	1.28	2.2	101	11	10.8	-9.8
06/07/06	Store Ck#2-Natural	922	31.7	0.7	72	1.56	8.5	477	46	9.7	20.2
06/08/06	Bailey Ck-Natural	820	51.4	1.1	75	1.85	2.8	186	68	36.3	27.9
	"low gear" MEANS:	1501.1	34.7	0.7	64.7	1.8	7.6	514.9	81.0	14.4	10.8
	"high gear" MEANS:	1501.0	34.7	3.0	64.7	1.8	7.6	514.9	291.3	56.6	10.8

¹Measured mean density of all suspension feeding bivalves in modeled area; usually determined from quadrat counts or similar method.

²Assumed/predicted individual clearance rate based on literature values; e.g. Powell et al. (1992).

³Measured length and width of the reef.

⁴Measured water depth over the reef taken for each set of measurements of flow, fluorometry, etc. x width of the reef. NOTE: 1 m reef width can be assumed for C and D if width not

⁵Measured water flow speed (usually at same height as fluorometry) taken for each set of measurements of fluorometry, etc.

Calibration of *in situ* **Fluorometers**

- Relation between *in situ* fluorometry and Chl *a* affected by several factors: plankton composition and condition, ambient light, dissolved material, etc.
- Key question: Does this affect the use of *in situ* fluorometry for quantifying seston removal rates?

Widely Variable Seston Removal (or ?) by Reef – Unknown Causes

Woodland Creek - Murrells Inlet May 16, 2005

- Wide temporal variability shows advantages of *in situ* datalogging vs. laboratory analysis of pumped water samples
- Data suggest wide temporal variation in population-level oyster feeding rate

Widely Variable Seston Removal by Reef – Some Causes Identified

Nearly Constant Seston Removal Rate

Examples of Constructed/Restored Reefs

Conclusion: Seston removal depends on oyster size and density

How do feeding rates based on *in situ* fluorometry compare to laboratory-measured rates?

Typically cited oyster clearance rate: <u>5 L/hr/g DW</u> (76 mm shell height ~ 1 g DW)

Powell et al. (1992) generic 76 mm bivalve: <u>2 – 8 L/hr</u> 37 mm bivalve: <u>0.7 – 3 L/hr</u>

Average of all SC *in situ* fluorometry-based clearance rates: mean shell size: 37 mm

mean clearance: 0.5 L/hr

Recent (2005-06) Studies on SC Reefs

Major Conclusions

- 1. Laboratory Chl *a* measurements compare well with *in situ* fluorometry (sometimes), but many factors cause variability
- 2. The water quality impacts of constructed /restored *and* natural reefs are largely a function of bivalve size and density relative to water column characteristics

Next Steps for in situ Fluorometry

- **1. Laboratory pigment analyses compared to** *in situ* **fluorometry**
- 2. Additional fluorometers (and other sensors) needed for increased resolution (NSF proposal)
- **3. Datasondes with multiple probes (NSF proposal)**
- 4. Development of predictive models and other management tools (NSF proposal)

Should assessments of water quality impacts be included in oyster restoration projects?

TABLE 1. Ecosystem services measures used at various ongoing shellfish restoration sites. Target species include: bay scallop *Argopecten irradians* (*Ai*), eastern oyster *Crassostrea virginica* (*Cv*), hard clam *Mercenaria mercenaria* (*Mm*), blue mussel *Mytilus edulis* (*Me*), and Olympia oyster *Ostrea conchaphila* (*Oc*).

STATE	WATER BODY	TARGET	POPULATION	SHORELINE	WATER	HABITAT/
		SPECIES	PARAMETERS	PROTECTION	QUALITY	BIODIV.
FL	Indian R. Lagoon	Cv, Mm	•	•		•
LA	Grand Isle	Cv	•	•		•
MS	Biloxi Bay,	Cv	•	•		•
	Grand Bay					
NH	Great Bay	Cv, Me	•		•	•
NY	Peconic Bay,	Ai, Mm,	•			•
	Great South Bay	Cv				
NC	Pamlico Sound	Cv	•	•		•
OR	Netarts Bay	Ос	•			•
SC	ACE Basin	Cv	•	•	•	•
ТХ	Copano Bay,	Cv	•	•	•	•
	GICW					
VA	Ches. Bay, East.	Cv	•	•		•
	Shore Lagoons					
WA	Puget Sound	Ос	•			•

Acknowledgments

UNIVERSITY of NEW HAMPSHIRE

CICEET The Cooperative Institute for Coastal and Estuarine Environmental Technology