Achieving Ecological Restoration: Consideration of factors influencing the success or failure of restoration efforts

Aswani K. Volety, S. Gregory Tolley, Michael Savarese; Florida Gulf Coast University, Fort Myers, Florida.

Peter H. Doering, South Florida Water Management District, West Palm Beach, Florida.

Background

- SW Florida one of the fastest growing areas in the country.
- Watershed development, water management practices to accommodate development.
- Interruption of sheet flow, water releases regulated through weirs.
- Watershed management typified by large freshwater releases during wet (rainy) summer months and little or no releases during dry winter months.

Background

- Historical records indicate that oysters were once significant features in the Caloosahatchee estuary, however, recent record show ecological impairment.
- Unknown questions: reproduction, potential sites for restoration, interaction between *Perkinsus marinus* and salinity, temperature, frequency, duration and quantity of freshwater releases...
- > Understand the system!

Healthy oyster reefs

MALE SHALL NOT A

Healthy oyster reefs

NOT in the Caloosahatchee Estuary

Why aren't the oysters there?

- One cannot go by historical accounts when restoring oyster reefs. Need to know the limiting factors.
- Larval recruitment (Shell strings).
- Water quality (Salinity, DO, contaminants).
- Suitable substrate (Substrate firmness and quality).
- Diseases, predators (*Perkinsus marinus*, crustaceans, molluscs).
- Good growth, food (Juvenile growth).
- Water Flow / killing floods (Timing, Low salinity, larval flushing).

Oyster Responses (e.g. Limiting Factors)

- Flows, salinities.
- Growth juvenile growth, condition index.
- Survival juvenile survival, adult distribution and density, disease.
- Reproduction recruitment, gonadal condition.

Temperature - Salinity

Water Flow vs. Salinity

Flow vs. Salinity

Survival: Disease

Juvenile survival and disease analyses yield results related to short-term survival

Growth & CI

Quantify the ability of an area to support oyster growth (i.e., suitable water quality, food availability). CI quantifies the overall health.

Survival - Growth

Juvenile survival and growth analyses yield results related to short-term survival and long term potential to support oyster reefs

Survival - Growth

Juvenile survival and growth analyses yield results related to short-term survival and long term potential to support oyster reefs

Reproduction

- Effects of water quality and substrate on long-term viability of reef
- Gonadal index: reproductive stage and qualitative estimate of fecundity
- Recruitment: estimates for next year class
- Management implications: timing of freshwater inflows

Reproduction: Gonadal Index

 Implications for freshwater releases timing

Reproduction: Recruitment

- Oysters reproduce between May – October.
- During high flows oyster spat are flushed downstream.

Spat Recruitment

Spat Recruitment

Reef Restoration

Select areas that have:

- Suitable substrate (at least create hard substrate)
- Low disease intensity
- Good spat recruitment
- Good growth rate
- Low # of killing floods (suitable salinity)
- Low predation
- Support high diversity / biomass of organisms

Needs substrate!

Despite a an year with heavy rainfall, and high amounts of freshwater discharges (and unfavorable salinities), oyster spat that recruited towards the end of the spawning season survived and grew on constructed reefs

Summary

Freshwater releases from Lake Okeechobee decrease salinities at the samples sites by 3-6 ppt.

Juvenile oysters at upstream locations with intermediate salinities showed higher growth, with the exception of Cattle Dock, a location that receives output from Cape Coral (water quality?)

Oysters in the Caloosahatchee Estuary spawn continuously between April – October. Limit freshwater flows during this time.

Summary

- High levels of freshwater flows during summer (spawning) months may flush out oyster larvae or reduce salinities to unfavorable levels.
- Low salinities (< 10 ppt) during year 2 at upstream locations resulted in poor spat recruitment compared to downstream locations that experienced intermediate salinities.
- Flows between 500 3000 CFS from Lake Okeechobee will result in optimum salinities at sampling locations (15 – 25 ppt).

Summary

- Decide on what is being restored / targeted and examine the water quality requirements.
- We identified water quality targets and specific sites that should sustain, enhance and restore oyster reefs in the Caloosahatchee estuary.
- Working with resource managers about the timing, quantity and duration of flows. Results are currently being used in setting minimum flows and levels.
- Pilot reefs are being built at targeted upstream locations.

Acknowledgements

Funding: South Florida Water Management District; NOAA; FGCU; USDOE; EPA.

Technical / Field Help: Lesli Haynes, Amanda Bridges, Erin Dykes and numerous graduate and undergraduate students.