### Health Considerations for Oyster Restoration Programs

Denise Petty, DVM
Roy Yanong, VMD
University of Florida
Department of Fisheries and Aquatic Sciences











- Roxanna Smolowitz
- Bower, S.M. and McGladdery, S.E. (2003):
  - Synopsis of Infectious Diseases and Parasites of Commercially Exploited Shellfish.

URL: http://www.pac.dfo-mpo.gc.ca/sci/shelldis/title\_e.htm





- Major health goals
- Hatchery and nursery infectious diseases
- Infectious field diseases and diagnostics
- Health protocol and biosecurity considerations
  - General health
  - Potential pathogen risks
  - Mitigation approaches





- "Release" healthy oysters
  - Minimize infectious pathogens in culture
- 2. Avoid spread of pathogens and disease
  - Significance of pathogen
  - May be region specific
- (\*\*Choose/use appropriate habitat/environment for "release"\*\*)

1 and 2 require good husbandry and biosecurity

### Pathogen significance



- Exotic (not local) vs. endemic (local)
- Regulated vs. unregulated
- Ubiquitous vs. rare or emerging
- Effect on health
  - Life stage differences
- Relative importance with regard to health assessment

# Hatchery and Nursery Infectious Diseases



## Potential Pathogen Sources in a Culture Facility



- Broodstock
- Algal stocks
- Seawater source
- Equipment
  - Gear
  - Cultch
  - Other animal vectors
- Miscellaneous sources
  - Air
  - Filters, surfaces, pipes, other system components

### **Juvenile and Larval Stages**



- Diseases have only been identified in a captive setting
  - Nursery/hatchery
- Difficult to identify disease problems in wild stocks
- Greater susceptibility to more common opportunistic diseases

### Hatchery/Nursery: Larval and Juvenile Diseases



- Fungi
- Bacteria
  - Opportunistic Vibrio spp.
  - Cytophaga-like bacterial infection of the hinge ligament
- Juvenile oyster disease (JOD)
  - C. virginica (MA, NY, ME)
  - Alpha-proteobacteria or protozoan
- Protozoa
  - Isonema-like flagellate

### Hatchery/Nursery: Larval and Juvenile Diseases



- Viruses
  - Oyster velar virus disease (iridovirus-like)
    - Larval Pacific oysters (C. gigas)
  - Herpes-like virus infection
    - C. gigas, C. virginica (Maine)
    - Associated with high temps

## Infectious Field Diseases and Diagnostics



### **Major Diseases of Concern**



- Perkinsosis (Dermo)
- MSX
- Seaside Organism (SSO)

### Perkinsosis (Dermo Disease)



- C. virginicia, C. gigas
- Perkinsus marinus
  - Apicomplexa, but more closely related to dinoflagellates
- Occurs from Maine to the Gulf of Mexico
  - Potential strain variation
- Direct transmission or via vectors such as drills
- Temp > 18°C
- Salinity ranging 15-30 ppt
- May take up to 2 years to cause mortality



### **Perkinsosis**



- Diagnosed via:
  - Histopathology
  - Culture
    - Ray's fluid thioglycollate media
      - hypnospores
  - PCR/RTPCR
- Management:
  - Require health screening before shipping seed
  - Develop resistant oysters
  - Allow infected leases/plots to lie fallow for 1-2 yrs
  - Monitor populations
- Listed in FDACS Division of Aquaculture BMPS







- Perkinsus olseni
  - Mya arenaria, Tridacna sp., others (Tapes decussatus), incidental finding in others such as M. mercenaria
  - Low mortality/prevalence
  - Maine to Gulf of Mexico, Portugal and Spain
- Perkinsus chesapeaki
  - Mya arenaria and Macoma balthica

## Multinucleated Sphere Unknown (MSX)



- C. virginica, C. gigas
  - Oysters considered aberrant hosts
- Haplosporidium nelsoni (protist)
  - Doesn't survive low salinities
- Florida to Maine
- Introduced to the East coast via C. gigas
- Listed in FDACS Division of Aquaculture BMPS



## Multinucleated Sphere Unknown (MSX)



- Morts can reach 90-95%
- Diagnosis via:
  - Gross exam
  - Squash preps
    - Spores in digestive gland 7.5 x
       5.4 μm
  - Histocytology
    - Plasmodia in blood cell suspensions
  - Histopath
    - Multinucleate plasmodia
  - DNA probes







- Caused by the protist, Haplosporidium costale
- C. virginica
- Seasonal, complex life cycle ending in final sporulation killing the host
- Distribution on east coast of United States and Canada (from Virginia to Nova Scotia) in water with a salinity over 25 ppt
  - Outbreaks in Canada in 2003





- Diagnostics
  - Histopathology
    - Multinucleate plasmodia and uninucleate spores containing bright red cytoplasm
      - Modified Ziehl-Neelsen carbol fuschsin technique
  - DNA probes
  - Difficult to differentiate MSX from SSO histologically in many cases







- Aber Disease (Digestive Gland Disease; Protist: Marteilia refringens)
  - Ostrea edulis, C. gigas, (calico scallop has similar disease)
  - Europe, but considered an import risk in the US
  - Calico scallop
    - Mass mort prior to 1988
    - East coast of Florida
- Bonamiasis (Microcell; Protist: Bonamia ostrea)
  - Affects flat oysters, O. edulis
    - 2 new species affecting the Asian oyster (Crassostrea ariakensis) and flat oysters
    - Most infected oysters appear normal
  - Distribution
    - Europe and the United States (California, Maine and Washington)
    - Confirmed cases in Virginia and North Carolina in 2003 and 2004

### **Other Diseases**



- Quahog Parasite X (QPX)
  - Net slime mold
  - M.mercenaria
  - import risk; listed disease in the Florida Division of Aquaculture's BMP document
- Nematopsis gregarian
  - All bivalves
- Xenoma
  - Ciliates (Thigmotrix)
- Coccidiosis (Klossia and Pseudoklossia)
  - Various bivalves, but common in bay scallops

### Other Diseases

- Rickettsiales/Chlamydiales
  - Most bivalves
  - Any epithelium
  - High morts in bay scallops
- Ovocystis
  - C. virginica, C. gigas
  - Papillomavirus-like papovirus
- Leukemia (hemic neoplasia)
  - Various bivalves
  - Unknown if infectious
- Others



# Health Protocol and Biosecurity Considerations







- "Release" healthy oysters
  - Minimize infectious pathogens in culture
- 2. Avoid spread of pathogens and disease
  - Significance of pathogen
  - May be region specific
- (\*\*Choose/use appropriate habitat/environment for "release"\*\*)

1 and 2 require good husbandry and biosecurity

### **Important Factors**



- Life stage
- Population locale
- Endemic diseases
- Water body of origin or destination
- Water quality parameters (e.g., salinity)
- Source of materials used

Different levels of importance based on type of restoration scheme

### **Restoration Health Protocol**



- Agreement on what is "normal" and "acceptable" health
  - Including state and federal regulations
- Current understanding of etiology, epidemiology, and relative importance of diseases
  - Cultured and wild stocks
- 3. "Normal" baseline for different populations

### **Restoration Health Protocol**



- 3. Sound protocol for health assessment
- 4. Methods for mitigation of risk for diseases
  - Will vary depending on restoration method
- 5. Plan for follow-up after release
  - Evaluation can be simple or more rigorous

### **Acceptable Health**



- Agreement on what is acceptable "normal" health for each life stage used for restoration
- Scenario dependent
  - Can be simple
    - Within "region" materials and/or animals
    - Observation/mortalities
  - Can be more complex
    - Externally derived materials and/or animals
    - Observation and sampling

### **Biosecurity Considerations**

- Potential pathogens
  - Introduction into "cultured" population and/or "receiving" population/environment
  - Pathogen significance
    - Locally exotic vs. endemic
    - Dermo
      - (Arnold): Tampa Bay vs. Mosquito Lagoon vs. St. Lucie-Central
      - Strain variations?
    - MSX?
- Broodstock origin, hatchery location, or transplant origin
- Consider regions
  - East vs. west coast
  - Currents
  - Major water bodies (Tampa Bay vs. Sarasota Bay)

### **Scenarios**

- Natural recruitment
  - Shell/Cultch addition
    - Oyster vs. non-oyster
  - Reef balls (synthetic)
- Hatchery
  - Wild broodstock
  - Algal cultures and seawater source
  - Shell substrate in tanks for larvae
    - Post larvae vs. older life stages
  - Release of setting size larvae into enclosure with shell
- General: site-to-site transfer/release of animals
  - Age/size/genetics
  - Geographic proximity
  - Currents/other features



## Scenarios: Risk and Mitigation of Natural Recruitment



### Potential pathogen sources

- Shell/Cultch substrate (1)
  - Oyster vs. non-oyster
  - Origin
  - Species
- Mitigation: shell/cultch
  - Limit use to within "region"
  - Consider pros and cons of species
  - Disinfection?
    - Effect on recruitment?

- Reef balls (synthetic) (2)
- Mitigation: reef balls
  - New or disinfected
  - "Within region"
- Gear/boat/material vectors (3)
- Mitigation: Gear et al
  - "Within region"
  - Cleaning/disinfection

## Scenarios: Risk and Mitigation of Hatchery



#### Potential pathogen sources

- Wild broodstock (4)
- Mitigation: broodstock
  - "Within region"
  - Statistical/random sampling
  - Separate conditioning broodstock into small tanks
  - Isolate and examine questionable broodstock
- Algal cultures (5)
- Mitigation: algal cultures
  - Periodically evaluate for potential pathogens
    - Bacteria, fungi, protozoa

- Seawater source (6)
- Mitigation: seawater source
  - "Within region"
  - Disinfection
- Shell substrate (1)
- Mitigation (discussed earlier)

### Scenarios: Risk and Mitigation of Release and Site-to-Site Transfer



### Potential pathogen sources

- Live oysters
  - ("Inherent" risk while in culture if animals become diseased)
  - Potential source of pathogens for endemic population
  - Age/size/genetics
    - Real or potential difference in susceptibility to disease
    - Difference in likelihood of harboring specific pathogens

- Mitigation: live oysters
  - "Within region"
    - Geography
      - Location, currents
  - Statistical/random sampling(i.e., health inspection)
    - Diagnostic methods will vary with:
      - Life stage
      - Pathogen





- Timing (collection, processing, and interpretation) and logistics
- Sample collection protocol to be developed
- Sample size
  - Numbers likely to be dependent upon
    - Pathogen of interest
    - "Relatedness" of sites of origin and release
    - Overall biosecurity of specific program
  - 30, 60, or 150
- Primary methods
  - Ray's Fluid Thioglycollate Medium (Dermo)
  - Histopathology (others)





- Other animals in/on culture materials, gear, or oysters
  - Vectors or carriers
- General vs. targeted surveillance
  - Loose or structured
  - Follow-up post-restoration event
  - Help determine etiology of morbidity/mortality or general health
  - Emerging or exotic pathogens and new information

### **Questions?**

