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Abstract 
 

Mapping Shellfish Distribution Using Hyperspectral Remote Sensing 
 

By Jeffrey S. Vincent 
 

 
A majority of all baseline shellfish maps are currently produced through ground 

surveys and manual aerial photo interpretation, a tedious process which is time-

consuming and prone to human errors.  The first objective of this research was to 

investigate and document the feasibility of using remotely sensed imagery to identify and 

classify intertidal shellfish resources.  A specific task was to spectrally identify the 

differences between mud and shellfish using a combination of hyperspectral remote 

sensing data and extensive in situ spectral data.  A second objective was the identification 

of spectrally relevant portions of the electromagnetic spectrum that are useful in 

identification of shellfish and to determine if there is a statistical difference between mud 

and shellfish. 

This research found that it was feasible to accurately identify shellfish and 

distinguish shellfish from mud.  It was found that with the incorporation of in situ derived 

spectral endmembers, the accuracy of the mapping procedure was lower than deriving 

spectral endmembers directly from the remotely sensed imagery.  It was also noted that 

changes within the habitat could have occurred between the acquisition of the remotely 

sensed HyMAP and AISA imagery and the acquisition of the in situ data may have 

contributed to lower accuracy results.  Secondary objective results indicate that the 

visible and near infra-red portions of the electromagnetic spectrum are the most useful for 

discriminating between shellfish and mud.  While statistical analysis showed there was a 

significant difference between mud and shellfish, there was also a high degree of 
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statistical differences within the collected shellfish data that a degree of uncertainty 

remains. 

The use of remotely sensed imagery, in situ ancillary data and field verification 

does result in shellfish maps that are less error prone than previous methodologies and 

allows for the mapping of remote or hard to access areas of shellfish resources. 

It is hoped that the creation of a repeatable, timely, and cost effective mapping 

technique that is less prone to error for the creation of baseline shellfish maps will benefit 

the coastal community at national and international levels. 
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Chapter 1. Introduction 
 

Shellfish occupy a niche in the ecosystem that is between the land and oceans in 

an environment that is continually becoming more influenced by humans.  Unfortunately 

with the rate of anthropogenic settlement along the coasts of the United States increasing, 

negative impacts on shellfish communities such as fecal coliform from diminished water 

quality, over harvesting, physical disturbance, and habitat degradation has forced the 

closing of shellfish harvesting grounds and the collapse of an entire industry in areas of 

the United States.  Not only are the shellfish reefs in danger of collapsing but the larger 

ecosystem of fin fishes that are dependent on the oyster reefs will be adversely impacted 

as well.  From a local to regional scale, these problems facing the shellfish ecosystem is 

forcing ecologists and other environmental scientists to focus on these long-term and 

regional scale questions (Michener, 1992).  This research addressed the use of remote 

sensing as an application to detect, map and monitor coastal shellfish assemblages. 

The interdisciplinary nature of this research merges the needs of shellfish biology 

with that of geography.  Simply put, shellfish biologists need a tool that will allow them 

to map and monitor intertidal shellfish resources in a repeatable and cost effective 

process.  Within the remote sensing community of geography is the need to apply 

spectral analysis from hyperspectral imagery to a marine coastal environment for 

technique validation.  While neither remote sensing nor marine biology literature 

addresses the specific question of deriving oysters in a marine environment using this 

technique.  These research questions were couched in terms of needs within the 

respective fields.  The literature review elucidates the history of oysters on the Atlantic 
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coast of the United States, the function of oysters as part of a larger ecosystem process, 

oyster restoration efforts, and needs within the current resource management strategies.  

In remote sensing the rapid pace with which technology has advanced fueled by greater 

access to remote sensing data has created many techniques for deriving information from 

the environment, especially in the area of hyperspectral remote sensing.  One such 

technique is Mixture Tuned Matched Filtering, (MTMF).  Two images result from 

analysis and mapping, one is the MTMF score and the second is an infeasibility image.  

The MTMF score shows the probability that the pixel is contains the material that is 

being mapped and the infeasibility score shows the probability that the material in 

incorrectly mapped or are false positives.  Used in conjunction with the MTMF score 

image, the user has the ability to refine the endmember selection and mapping process to 

increase accuracy. 

This mapping research utilized two components for the MTMF technique: 1) 

using in situ shellfish spectral signatures to build a spectral library of oyster strata 

through the course of a year for input into the MTMF method, and 2) imagery derived 

spectral endmembers.  A statistical comparison between image derived endmembers and 

in situ aggregated (and non-aggregated) endmembers was done to test for similarity.  The 

main objective of this research was to test if shellfish could be differentiated from mud 

using remotely sensed hyperspectral imagery and classified to produce a map of shellfish 

distribution.  Ancillary to this research was an accuracy assessment as a means of 

objectively assessing the utility of the two remotely sensed data sets used in the research. 
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Chapter 2. Literature Review 
 
2.1 Disappearing Oysters 

 
The dominant species of shellfish found along the eastern United States are 

Crassostrea virginica (Eastern Oyster) and Mercenaria mercenaria (northern quahogs). 

C. virginica is found predominantly within the intertidal zone of the South Atlantic and 

Gulf coast.  They are ecologically and economically important suspension feeders that 

occur in estuaries from Nova Scotia to Florida and northern Gulf of Mexico. Mercenaria 

campechiensis (Southern quahogs) has a spatial range from New Jersey to Florida and 

along the northern Gulf of Mexico, (Grizzle, 1990) but today they are only found in the 

southern salt marshes. 

The history of oysters and also its decline can be traced to the economic 

importance placed on the industry at the height of commercial harvest.  The peak harvest 

years along the east coast of the United States was between the years 1880-1910 with 

72.7 million kilograms of meat per year but declined to 18.3 million kilograms by 1995 

(Coen, et al.1999b; 2000).  The once highly productive areas of the Chesapeake Bay, 

Delaware Bay, and North Carolina were decimated and the industry collapsed.  Many 

attributed the collapse of the industry to two principal diseases: Haplosporidium nelsonii 

(MSX) and Perkinsus marinus (Dermo) but recent studies cite other factors that have had 

a significant impact on the decline of shellfish such as habitat degradation 

(eutrophication), reduced water and habitat quality, natural and introduced predators and 

competitors, disturbance (boating, storm, dredging), shortages of oyster cultch, over-
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harvesting, and interactions among these factors, (Coen and Luckenbach, 1999a; 2000: 

Smith and Greenhawk, 1998). 

 
2.2 Oyster Reefs in an Ecological System 

 
Coen et al., (1999a, 1999b, and 2000) believe that molluscan reefs are essential 

fish habitat and charges the Magnuson-Stevens Fishery Conservation and Management 

Act of 1996 as a legal basis for the protection, restoration, and enhancement of all 

“essential fish habitats” (EFH).  An EFH is supported by the idea that oysters form a 

subtidal and intertidal structure in the estuary that supports a host of “fish” (fish is 

defined as crustaceans, mussels, finfish, and all other forms of marine life except 

mammals and birds). 

Shellfish reefs are a community of organisms having multiple functions within an 

integrated ecological system.  An understanding of the inter-relationships and functions 

of the various components of the shellfish reefs will not only sustain and enhance 

shellfish but will also lead to a greater understanding and better management practices of 

the macroinvertibrates, and fishes that are provided a habitat by the reefs.  Small 

interstitial spaces between the shells serve as locations for settlement sites for spat growth 

and act as a shelter from predation for fish fry.  The filtration capacity as contributing to 

the control of phytoplankton within the water column by dense molluscan communities 

has been well studied (Cloern 1982; Smaal and Haas 1997; Cohen et al. 1984; Roditi et 

al. 1996; and Dame et al. 1992 in Coen 1999).  The ability to filter large amounts of 

water also helps to mitigate siltation of the water column.  Breitburg (1999) defined three 

groups of finfish that that are ecologically associated with Chesapeake Bay oyster reefs; 

fish that are permanent residents of the reef; facultative residents; and transient residents 
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that use the reef to forage but are free ranging.  Coen et al. (2000) lists many resident fish 

species, i.e. the oyster toadfish that use the reef microhabitats as nesting sites and as 

many as 79 species were found in a survey of reefs in Maryland, Virginia, North 

Carolina, South Carolina, and Texas.  Sustainment of shellfish reefs are essential not only 

to the commercial and ecological value of the mollusks themselves but also the benefit of 

the commercial / recreational / ecological value of the finfish that utilize the reef as a 

habitat. 

Currently in the literature there are three dominant approaches to management of 

shellfish resources; 1) to restrict the commercial/recreational use of the resource, 2) 

substrate or cultch addition, and 3) transplanting oysters.  Hackney (2000) and Coen et al. 

(2000) recognized the need for an adaptive management approach that incorporates 

research with monitoring based information as inputs into restoration and management 

decisions.  It allows for changes in restoration goals as the sites change with time.  

Monitoring as an approach was cited as a tool by Lyon (2001) for change detection of 

wetlands using aerial photography.  An impediment to making specific goals for essential 

fish habitat is the lack of data on natural reef systems, (Coen et al. 1999 and 2000).  

Uses of remote sensing with the marine or coastal resources have been historically 

limited.  Applications of remote sensing of shellfish resources are scarce to virtually 

nonexistent.  Grizzle (1990) details the use of aerial infrared photography for locating 

shellfish reefs and then conducting field surveys to determine the distribution of shellfish 

within a lagoon.  Another use of remote sensing has been the use of side-scan sonar, 

acoustic sub-bottom profiling, and video equipment to access and chart the physical 

condition of the oyster habitat in Maryland’s Chesapeake Bay (Smith and Greenhawk, 
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1998).  Smith, Bruce and Roach (2001) also used side-scan sonar sub-bottom profiling 

systems, and acoustic seabed classification systems to access oyster habitat in the 

Chesapeake Bay with integration into a geographic information system.  They found the 

side-scan sonar was superior at discernment of fine-scale bottom morphology, large 

object detection.  The acoustic classification system was the best stand-alone technology 

for differentiating bottom composition, distribution, and quality of oyster habitat in sub-

tidal environments. 

2.3 Applications of Spectral Unmixing and Endmember Extraction  

The goal of any remote sensing method is the ability to link remotely sensed data 

to the familiar frame of reference of the observer on the ground, (Adams, et al., 1993).  

The problem of classification becomes problematic when the spatial resolution becomes 

coarser than the objects being sensed.  The result is a mixture of reflected energy by the 

constituents of a particular pixel.  For hyperspectral imagery the problem becomes 

compounded further by the spatial autocorrelation of bands that contain similar 

information.  To account quantitatively and qualitatively for the fractions of endmembers 

various methods have been developed that seek to extract the spectral signatures of 

materials within the pixel and then map the endmembers to produce an image of 

endmember probability.  Depending on the type of mapping method employed the output 

also can contain either a root mean square image for error analysis or as in MTMF an 

infeasibility image is produced showing false-positive pixels. 

Spectral mixture modeling is a technique for separating earth materials within a 

pixel into its constituent components by the use of endmembers which represent the 

spectral signatures of the cover type, (Garci′a-Haro et al., 1999).  Endmembers are 
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recognizable features in a scene that are abstractions of objects regarded as having 

uniform properties that are meaningful to an observer (Strahler et al., 1986).  The 

composition or number of endmembers may not be known so the problem is to 

decompose the mixture into constituent endmembers supported by the dimensionality of 

the data.  Specular and diffuse reflectance from earth materials influence the delineation 

of the endmembers and contribute to noise in the modeling.  

Generally, there are three methods described in the literature to deduce 

endmembers all of which have limitations.  Bierwirth (1990) extracted endmembers 

directly from the image using the known spectral signatures of the dominant cover type.  

A second method uses principal component analysis (PCA) to enclose the pixel cloud 

within a solid geometric figure with the number of vertices equal to the dimensionality of 

the data (Garcia-Haro, et al. 1999).  The preceding two methods assume that the spectral 

endmembers are contained within the dataset and are not realistic since most surfaces are 

not composed of homogenous materials.  Endmembers not represented by the pixel 

composition are termed “external endmembers”.  Three other techniques based on 

endmember externality are the QMODEL, fuzzy algorithms, and parallel coordinate 

representation.  These endmembers are derived from the relationship between samples 

located as vectors in principal component space (Garci′a-Haro et al., 1999).  Johnson et 

al., (1985) uses an expert system to accept or reject imagery-derived endmembers by 

aligning reference endmembers against endmembers that are derived from imagery. 

2.4 Selection of Endmembers: 

The spectral mixing analysis method depends on the accuracy of the endmember 

selection.  If the endmembers are incorrect then the probability scores are also incorrect.  
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An assumption of spectral mixture analysis is the linear mixing systematics where each 

pixel on the surface is a physical mixture of multiple components weighted by surface 

abundance and the spectrum of the mixture is a linear combination of the endmember 

reflectance spectra (Tompkins, 1997).  The usual method for selecting endmembers is 

from an image cube “image endmembers” which best accounts for most of the spectral 

variance in a constrained least-square mixture model.  These endmembers are then 

compared with “reference endmembers” which are field or laboratory generated spectra.  

Fraction images are the numeric abundance of the endmembers contained within the 

pixel.  The advantage to having the fraction images is the relationship between physical 

processes and abundance of surface endmembers.  

Tompkins et al. (1997) developed a method of selecting endmembers where 

ground truth was not available using a subjective and objective approach.  The subjective 

approach is a statement of the subjectivity of in situ field measurements.  For instance, 

the spectral endmember for a tree that is a percentage of a pixel is problematic when 

deciding how to represent all of the spectral variability such as leaves, bark, and shade.  

Which spectral profile best represents the tree?  The other extreme is the objective 

approach for selection of endmembers using purely statistical methods such as principal 

component analysis (factor analysis) or convex hull geometry.  Unlike the subjective 

approach, the objective approach assumes no a priori knowledge.  Tompkins et al. (1997) 

combines the two approaches to find endmembers that were grounded in physical and 

spatial reality, (earth) but also are the best fit of the data cloud. 

Garci′a-Haro et al. (1999) compared the constrained least squares method and 

factor analysis methods and found that both methods were able to estimate the fractional 
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abundance of the component mixture but the constrained least squares method had less 

biased estimates.  They recommended that factor analysis is useful for finding the number 

and spectral signature of the endmembers.  

2.5 Applications of Spectral Analysis: 

In general terms hyperspectral remote sensing has application into seven broadl 

categories such as: rock and soil, vegetation, snow, ice, water, and atmosphere.  Within 

the observed literature, most of the work being done using spectral mixture analysis has 

been in the area of vegetation, mineral, and soils mapping.  Earlier use of hyperspectral 

imaging identified the unique contribution that can be made to vegetation mapping.  

Reflectance spectra in the 0.4 - 2.5µm region of the electromagnetic spectrum contain 

information on leaf cellular structure, leaf moisture content and plant pigment 

concentration (Jensen, 2005).  This is used to assess vegetative health, chemical 

composition, and structure. 

The use of spectral mixture analysis has not been limited to use in hyperspectral 

imagery but during the late 1980’s through the 1995 most of the analysis using spectral 

mixture analysis has been done utilizing mutispectral platforms such as the Landsat 

Thematic Mapper.  Applications using this platform include work done by Adams et al. 

(1995) and Garc′ia-Haro, et al. (1996 and 1999).  Adams et al. (1995) classified 

multispectral imagery using fraction endmembers to detect land-cover change in the 

Brazilian Amazon.  They used four reference endmember spectra: shade, green 

vegetation, nonphotosynthetic vegetation, and soil.  They quickly recognized that 

reference endmembers could not account for the full natural variability of materials found 

on the ground which in turn affected the estimates of the fractions.  What they were able 
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to provide with invariant endmembers was the consistent frame of reference for the four 

images.  Using a four year TM sequence they found that endmember classification may 

be generally useful for comparing multispectral images in space and time and 

classification accuracy was improved for any one year by considering the multiyear 

context.  Smith et al. (1992) used AVRIS and Landsat TM imagery to detect vegetation 

communities and changes in vegetation biomass using spectral mixture analysis.  Using a 

range of vegetation communities, their study sites included a semiarid ecosystem in the 

Owens Valley, California and tropical rain forest in Manaus, Brazil.  In the Owens Valley 

study using AVRIS imagery they identified two types of green vegetation and shade and 

two soil types.  Using a Landsat TM image in the Manaus study they identified green 

vegetation and non-vegetated endmembers.  The non-vegetated endmembers take into 

account the branches and stems exposed in the canopy as well as shade and soil.  In both 

cases the in situ field measurements correlated well with the fraction maps.  They 

cautioned that estimating biomass varied significantly with respect to the fraction maps at 

different times of the year. 

The problem of endmember variability was also addressed by Bateson et al. (1996 

and 1998).  Their study was explicitly designed for hyperspectral imagery by first 

isolating the pure endmembers as seeds and then “grew” the spectra by including 

neighboring spectra.  Criterion for inclusion was reflectance values are between 0 and 1 

and they are sufficiently correlated (R = 0.99) to the seed endmember.  They concluded 

that endmember bundles are a way of showing an understanding of the variability of 

endmembers and for quantifying uncertainty in fractional estimates. 
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Detection of seasonal changes in a semi-arid landscape using AVRIS data was 

studied by Yuhas et al. (1993), using convex geometry spectral unmixing techniques.  

They showed that seasonal changes can be detected both spatially and spectrally by the 

incorporation of the convex hull method.  The convex-geometric unmixing utilizes the 

scatter points in spectral-space after a minimum noise transformation.  The goal of the 

method is to geometrically determine the lowest dimensional subspace that the data 

spans, (Yuhas et al. 1993).  A realized benefit of this method is the entire process is 

independent of user provided data when used in conjunction with the ATREM 

atmospheric correction model. 

Most uses of spectral analysis are of the linear spectral mixture type.  Linear 

spectral mixture analysis is best described as the modeling of each spectrum in a spectral 

dataset as a linear combination of a finite number of spectrally distinct signatures having 

fractional abundances between 0 and 1 and summing to one (Bateson and Curtiss, 1996).  

The use of linear mixture modeling was used by McGwire et al. (2000) to compare the 

differences between hyperspectral (Probe-1, Earth Search Sciences Inc) and multispectral 

(Analytical Spectral Devices, Inc from 0.4 – 2.5µm) instruments.  They used the 

normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), 

and the modified soil adjusted vegetation index (MSVI) to test the relative ability of the 

hyperspectral and multispectral platforms to detect anthropogenic disturbance in an arid 

environment.  Problems using traditional vegetation indices are pronounced in arid 

environments due to sparse vegetation and soil reflectance dominance.  Vegetation cover 

for the study was calculated visually from the plot sites which were located in the Mojave 

National Preserve.  Vegetation cover ranged from high (greater than 45%), medium (25-
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31%), and low (12-16%).  NDVI results from both the narrowband and broadband 

instruments were relatively similar, the SAVI performed worse than the NDVI and the 

MSVI did not show significantly better performance.  The use of linear mixture analysis 

showed significantly better results, but when they incorporated multiple vegetation 

endmembers into the analysis they obtained significantly better results.  The inclusion of 

multiple vegetation endmembers was determined after results indicated that a single plant 

species Krameria erecta, was strongly correlated with the residuals.  This inclusion of 

more than a single endmember to represent endmember variability was consistent with 

studies by Adams et al. (1995), Garc′ia-Haro et al. (1996 and 1999), and Bateson et al. 

(1995) as discussed previously. 

The use of multiple endmember spectral mixture analysis (MESMA) in an arid or 

semiarid environment does have practical limits when deriving the vegetation types using 

the MESMA method in an area that has less than 30% vegetation cover.  Okin et al. 

(2000 and 2001) found that spectrally indeterminate vegetation types that are 

characterized by low spectral contrast are difficult to model even when species richness is 

high.  The potential of unmixed spectra resembling an unknown material from the 

combination of soil and vegetation further confounds the ability of MESMA to retrieve 

accurate vegetation and soil types.  The level of uncertainty only increases when the 

effects of nonlinear mixing are introduced.  

Nonlinear mixing occurs when light is scattered by having multiple interactions 

with materials that are spatially close (Ray and Murray, 1996).  Boardman and Kruse 

(1994) stated that linear mixing occurs in the instrument, but nonlinear mixing occurs in 

the material that is being sensed by the instrument.  Ray and Murray (1996) are of the 
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opinion that shrub architecture plays an important role in nonlinear mixing and the error 

observed in linear mixing may be accounted for by the interaction of light and vegetation 

that has multiple endmembers. 

Maas (1998) used Landsat TM imagery and linear spectral mixture analysis to 

estimate cotton canopy ground cover.  In precision agriculture, remotely sensed 

parameters such as biomass, leaf area index, and plant canopy were correlated with 

empirical data and a mathematical curve was statistically fit to paired measurements.  

Problems were encountered due to the observations containing effects of factors specific 

to the place and time of the observations such as row spacing, plant height, soil color, 

texture, and shadows (Maas, 1998).  Shadows affected scene reflectance which affected 

the independent variable (remotely sensed imagery) that was used to develop the 

empirical relationship with the dependent variable (cotton canopy).  The result indicated 

that empirical relationships will differ from location to location under different times and 

conditions.  To correct for the time and location Maas utilized a linear mixture modeling 

approach to calculate ground cover from scene reflectance in the red and near infrared 

wavelengths.  Prior testing of the technique was done using ground based 

spectroradiometer measurements from different years and locations and aircraft 

observations (Maas, 2000).  The study done in 2000 used a commercially available 

Landsat TM image in a continued validation of earlier findings.  Conclusions suggested 

that observations in the red and near-infrared spectrum that were derived from Landsat 

TM imagery can be used to accurately estimate cotton canopy ground cover by 

compensating for shadows cast by the plants on the soil between rows.  Maas’ results 

concurred with earlier findings that estimates are independent of location and year and 
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were based solely on remote sensing observations without additional field information 

(Maas, 2000). 

Peddle et al. (1999) used a combination of spectral mixture analysis and 

geometric-optical reflectance techniques to compare biophysical parameters derived from 

NDVI and MMR radiometer data from 31 stands of black spruce.  The biophysical 

parameters they tested were net primary productivity (NPP), leaf area index (LAI), and 

solar zenith angle (SZA).  Problems observed with NDVI derived biophysical parameters 

as previously reported by Peddle include data that is influenced by background soil, 

forest floor effects, canopy geometry, and leaf optical properties at subpixel scales 

(Peddle et al. 1999).  Peddle et al. (1999) built upon the work by Hall (1995) by using 

component reflectances that were obtained by both a simple cylinder-based geometric-

optical model and measurements used as inputs into the spectral mixture analysis.  Peddle 

(1999) sought to validate Hall’s earlier findings and improve upon earlier work by 

considering the importance of solar zenith angle variations for estimating component 

endmembers, a more sophisticated cone and spheroid representations of canopy 

geometry, and an independent method for determining the accuracy of pixel fractions on 

their overall approach.  Using linear regression analysis of forest biophysical variables 

and detailed analysis using aerial photography to validate scene fractions, they concluded 

the spheroid model was more accurate than the cone and cylinder models for solar zenith 

angle corrections.  Using the spheroid model, a solar zenith angel of 45o proved to 

provide the best overall shadow fractions (canopy mutual shadowing).  The spheroid 

model that was used to estimate the sunlit fraction proved to provide the most consistent 
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results.  Over all, the method outlined above represent a substantial improvement over 

parameters derived from NDVI for all variables and at all solar zenith angles. 

A novel approach in the use of MESMA has been the use of image fusion in 

conjunction with MESMA.  Image fusion merges two images of differing spatial and 

spectral resolutions.  The use of a high spectral resolution image allows for the 

identification of materials in the image using MESMA and high spatial resolution allows 

for locating the materials within the image.  Gross and Schott (1998) explored the use of 

linear unmixing by first unmixing an image into its constituent fraction maps and then 

fusing with a high spatial resolution image.  They were able to quantify their results by 

knowing and controlling the radiometric, geometric and spatial properties of the images 

through the use of Synthetic Image Generation (SIG) software.  While there are many 

techniques for image fusion such as component substitution techniques, the goal here is 

not a review of the fusion techniques but an elucidation of the applications of spectral 

mixture analysis.  In this particular study the authors used a nonlinear constrained 

optimization algorithm they developed to locate the endmember fractions at a higher 

degree of spatial resolution for fusing the two images.  Their conclusions showed that 

using the synthetic image generation provided optimal conditions for the study and using 

the nonlinear constrained optimization technique they were able to quickly locate 

subpixel endmembers into higher spatial resolution.  In cases where the materials have 

similar reflected radiances in the panchromatic band, the optimization technique returns 

fractions that are equal to the lower spatial resolution and no sharpening will occur 

without the introduction of further degradation.  Robinson et al. (2000) built upon earlier 

work in image fusion by comparing three methods of image fusion and spectral 
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unmixing.  They compared three methods of image fusion and unmixing: the first method 

fuses images and then unmixes them, the second, unmixes the image using an adaptive 

unmixing algorithm and the third option also unmixes and then fuses the images but use a 

traditional image wide unmixing method.  The adaptive unmixing technique is a step-

wise regression technique that adaptively selects a spatially varying set of endmembers 

and solves for the fractions of the selected endmembers within each pixel.  The 

traditional unmixing approach assumes a fixed number of endmembers through out the 

entire image and attempts to find fractions for K(x,y) endmembers in each pixel 

(Robinson et al. 2000).  In areas with few materials present, the fractions may be 

overestimated and in areas where there are many materials (such as an urban landscape) 

endmembers maybe missed.  This problem is the same as previously discussed with 

endmember variability in sparse landcover.  The step-wise method requires, “that for 

each pixel, a library of endmembers be searched for the n members that are in that pixel.  

These endmembers are those that minimize the error without “overfitting” the sensor 

measurement” (Robinson et al. 2000).  Regression mixing is based upon the ANOVA 

aspect of “Extra Sum of Squares” from Draper and Smith (1981).  As in previous studies 

they were able to control for spatial, radiometric and geometric variables through the use 

of synthetic imaging software and then they verified their findings using a DAEDALUS 

multispectral image with 12 bands (they omitted the two thermal bands) and fused it with 

a synthetically derived image to insure that no artifacts were introduced during the 

parameter optimizations in the SIG processing.  Their conclusions showed the step-wise 

unmixing was superior to traditional linear or multiple endmember mixture analysis.  

They based this on step-wise unmixing “always” producing lower squared error than the 
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traditional methods.  Further, they stated that because traditional unmixing performed 

poorly, the majority of their work focused solely on the step-wise/fuse method to the 

fuse/unmix method.  As to which method works better the authors couch their 

conclusions in the context as to the purpose of the work.  If accuracy is desired then the 

step-wise unmix/fuse method is best but if visually enhanced fraction maps are the 

purpose then the fuse/unmix method should be the choice. 

Depending on the purpose of the study many applications for ecological research 

do not need high spatial resolution.  An ecological application using a simple linear 

mixture analysis was done by Sabol et al. (2002) to determine stages of regrowth in 

forested areas of the Pacific Northwest.  Forested areas in different structural stages will 

have different ecological functions than areas of young or old growth.  The ability to 

determine forest age using remote sensing is a benefit to ecologists studying forest 

function and age.  In this study the authors used a four endmember constrained linear 

unmixing method and applied it to a Landsat TM image of the Gifford Pinochet National 

Forest.  The endmembers represented the green vegetation, nonphotosyntethic vegetation, 

shade, and soil.  Shadowing due to topographical effects was resolved by the use of a 

digital elevation model to remove the unresolved shadows from the imagery prior to 

mixture analysis.  They were able to derive the age of forested areas through the use of a 

ratio between green vegetation and the shade and soil endmembers.  Mature or climax 

forest will have a higher level of green vegetation relative to the other endmembers and 

conversely, a young forest in the early stages of regrowth will show a greater level of soil 

and non photosynthetic vegetation relative to green vegetation.  Using field analysis of 

495 forest stands they were able to access the accuracy and precision of the predicted 
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stand ages.  They did caveat their findings with associated uncertainties when mapping 

stand characteristics.  They use as an example the parameter stand age and discussed the 

source of uncertainties.  As example they listed instrument and atmospheric effect, 

spectral variability of surface components, incomplete removal of topographic effects, 

variations in management practices to erroneous USFS data.  They listed spectral 

variability as one of their uncertainties but as discussed above one wonders if the use of a 

single green vegetation endmember is sufficient to encapsulate the total spectral 

variability. 

Spectral mixture analysis has been applied extensively in terrestrial applications 

and tested with synthesized spectra in the laboratory.  Terrestrial applications include the 

ability to discriminate between vegetation, soils, and shade, Garci′a-Haro et al. (1999 and 

1996), Huete (1986), Tomkins et al. (1996), and Adams et al. (1995).  

A portion of the literature that was surveyed covered the geological 

biogeochemical uses of spectral unmixing most of which has its application in the 

development of the unmixing algorithms.  Boardman and Kruse (1994) showed the utility 

of unraveling mixed pixels from AVRIS to separate spectral endmembers that show 

subtle differences between dolomite and calcite minerals without any a priori knowledge 

in the North Grapevine Mountains, Nevada.  The North Grapevine Mountains in Nevada 

has been the site of extensive geological study using spectral mixture analysis.  

The use of spectral mixture analysis to convolve a pixel into its constituent 

endmembers by the use of a reference library or through techniques that do not use any a 

priori information has its use primarily in the application of vegetation or mineral 

separation where endmembers are distinct.  What are not discussed in the literature are 
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applications of this method in a coastal estuarine environment where the objects are 

assemblages of marine animals found in a variety of substrates.  
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Chapter 3. Methodology 

3.1 Introduction 

The field methodology portion identified 6 locations within the North Inlet-

Winyah Bay National Estuarine Research Reserve that were partially representative of 

the spectral variability of shellfish spectral and strata characteristics.  The objectives and 

treatments used in this research were; 

• Treatment One:  Create a spectral library to map spectral endmembers within 

remotely sensed imagery using the MTMF methodology.   

• Treatment Two:  Derive oyster spectral endmembers from remotely sensed 

imagery and map their distribution within the study areas using AISA and 

HyMAP imagery. 

• Treatment Three:  Compare classification accuracies between in situ and the two 

image derived spectral endmembers.  Compare accuracies between AISA and 

HyMAP imagery. 

• Treatment Four:  Ascertain whether it is possible to distinguish spectrally or 

statistically between mud and oysters 

The methodology that was implemented for the mapping portion of this research 

is shown in figure 3.1.  Spectral characteristics of sites were obtained using a hand-held 

GER 1500 spectroradiometer (Geophysical and Environmental Research Corporation, 

Millbrook, NY) that had a calibrated spectral range from 350 nm – 1093 nm with 512 

channels and a bandwidth 1.5 nm.  Readings were gathered from selected field sites once 
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a month for the period July 2003 through July 2004.  The objective was to obtain a record 

of the spectral variability of the shellfish strata during the sampling period under varying 

environmental and atmospheric conditions.  The mean of apparent reflectance of the 

readings for a specific sample point and stratum by month constituted the spectral 

reference in the spectral reference library.  

The two data sets of remotely sensed imagery used in this research differed 

greatly in both spectral and spatial attributes, the HyMAP imagery is considered a “true” 

hyperspectral image with 126 many narrow contiguous bands, spectral range from 0.439 

– 2.488 µm and 4 X 4 spatial resolution.  The AISA imagery has 7 bands with a spectral 

resolution of 0.498 – 0.819 µm and 0.5 X 0.5 meter spatial resolution. 



 32

Figure 3.1 - Spectral Analysis Data Processing Flow Chart  

 
3.2 Research Objectives and Hypothesis 

With all the applications of MTMF occurring within terrestrial ecosystems there 

is a natural logical extension to applying this method to an estuarine ecosystem. The 

broad question concerning the use of MTMF is: can MTMF analysis be used in an 

HyMAP & AISA 
Hyperspectral Imagery 

In Situ 
Aggregated 

Library Spectra 

Image Derived 
Spectral 
Endmembers 

Field Reference Image 

Selection of Relevant Fractions for 
input into Pixel Purity Index

MNF 

Create mask of water and vegetation pixels 

Mapping - Mixture 
Tuned Matched 

Filtering

Scatter-plot – Infeasibility Plot vs. MTMF 
Score Plot 

Selection of endmembers with high 
MTMF score and low Infeasibilty 

score 

Final – Mapped Endmembers 

Error 
Matrix 



 33

estuarine ecosystem?  Is there a transferability of results and problems that are found in 

terrestrial applications the same as in an estuarine ecosystem?  Are the confounding 

issues of MTMF analysis such as spectral endmember variability the same in an estuarine 

ecosystem as in a desert ecosystem?  The background in an estuarine ecosystem is a 

soil/mud matrix, water, and vegetation.  Healthy shellfish filter suspended material and 

mud from the water then deposit it on the shellfish reef.  A problem in classifying 

shellfish is the very small size of the object being sensed and the confounding effect of 

shellfish covered in various degrees in the mud substrate.  A narrower question in the 

application of MTMF analysis in an estuarine ecosystem is: Can shellfish be 

quantitatively remotely sensed and separated from the soil/mud matrix by MTMF 

analysis?  The main objective of this research is to spectrally differentiate and separate 

the shellfish endmember from mud, vegetation and water endmembers for the purposes 

of classifying and mapping within a geographic information system.  Additionally, If 

shellfish can be spectrally differentiated from the soil/mud matrix, can shellfish be further 

differentiated between live and dead (washed) shellfish?  

3.2.1 Hypothesis 

Null Hypothesis one Ho1: There is no difference between maps produced by 

either reference library spectra and derived endmembers through MTMF analysis. 

Null hypothesis two Ho2: There is no spectral difference between live oysters and 

mud. 

3.3 Study Area 

North Inlet-Winyah Bay National Estuarine Research Reserve covers about 80 

km2 of barrier islands, low-lying coastal forests, and intertidal salt marsh near 
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Georgetown, South Carolina.  It is an estuarine environment that is bordered on the east 

by the Atlantic Ocean and two rivers on the west-southwest: the Waccamaw and the 

Great Pee Dee that feed into Winyah Bay which is south of North Inlet.  The 2,630 ha 

primary research area includes high salinity Spartina alterniflora marsh and 715 ha of 

tidal creeks with an average channel depth 3m, and a seasonal temperature range of 3-33o 

C (Porter et al.1996).  Land cover composition at mean tide is Spartina alterniflora marsh 

is 73.0%, tidal creeks 20.6%, oyster reefs 1.0%, and exposed mud flats 5.4%, (Porter et 

al. 1996).  There were a total of nine named study sites located within the Jones Creek / 

Duck Creek (aka Bob’s Garden) area and No Man Friend’s Creek.  The North Inlet 

sample sites are shown in figure 3.2.  Each sample site had its location pinpointed using a 

Trimble XR Pro global positioning system with real time differential correction and was 

processed further using the Charleston, SC ground receiving station.  Each sample site 

was identified by a four foot section of PVC pipe that was hammered into the oyster bank 

and given a unique identification code.  Additionally figure 3.3 shows a photo essay of 

the sample sites and a sampling of the strata found. 
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Figure 3.2 - North Inlet Study Area with Sample Site Locations 
 

Number 1 in the above image shows the location of No Man’s Friend 1 which 

was a patch reef that was approximately 4 meters wide by 10 meters in length and was 

primarily composed of shellfish and Spartina alterniflora.  Number 2 was No Man’s 

Friend 2 sample site which was representative of mud.  The site was approximately 12 

meters wide by 15 meters in length.  Number 3 on the image was Bob’s Garden sample 

site #4 which was a large patch reef that is approximately 70 meters long and 15 meters 

wide.  Number 4 was a composite of three sample sites, Bob’s Garden 1 through Bob’s 
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Garden 3.  These three sample points were composed entirely of shellfish with the patch 

reef measuring approximately 3 meters wide by 8 meters long.  The geographic locations 

of Bob’s Garden sample sites were located within Duck Creek.  Number 5 was Jones 

Creek sample points 1 and 2 that measured roughly 2 meters wide and 15 meters long.  

These sample points were located on a narrow fringing reef that was composed of very 

few live shellfish.  Number 6 in the above image was Jones Creek sample point #3 

located on a narrow fringing reef like Jones Creek 1 and 2 but composed manly of dead 

washed shell.  Washed shell is a nomenclature given to shell that has been exposed for an 

extended portion of time to the water and sun.  Exposure to the elements has had a 

“bleaching” effect upon the shell thus giving it a “washed” appearance. 
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Figure 3.3 – North Inlet, South Carolina Sample In Situ Sample Sites 
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Figure 3.3 - Continued 

No Man’s Friend 1 Sample Site
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Figure 3.3 - Continued 
 
3.4 Selection of Appropriate Platform 

The HyMAP image extent around the BOB4 sample site did not have the same 

extents as the AISA image sample area extents due to the spatial arrangement of the 

flight-lines.  The HyMAP regions of interest were spatially subset from the larger 

HyMAP flight-line.  The HyMAP image subset is 258 columns by 189 rows.  HyMAP 

has 126 bands covering the spectral range from 452 nm to 2482 nm effectively covering 

from the visible (VIS) to the short wave infrared (SWIR) regions of the electromagnetic 

spectrum.  The region of interest subset of the HyMAP image was spectrally subset into 

two regions of interest to ease computational loads and isolate more nuanced differences 

in spectral responses.  Subset 1 (ROI_1_Bands2_44) and subset 2 (ROI_1_Bands45_126) 

include 452.9 nm to 1078.8 nm and 1.093.8 nm to 248.2 nm respectively.  All bands were 
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used in the analysis with the exception of some water absorption bands that occur at 

bands 63-65 (1.4044 – 1.4328 nm), 94-97 (1.8034-1.9877 nm), and band 126 (2.4822 

nm) due to a lack of image cohesion.  

As with the AISA region of interest, a mask was constructed of the water and 

vegetation using the 2-dimensional feature space viewer.  Both georectified flight lines of 

the HyMAP apparent reflectance images are shown in figure 3.4 and in figure 3.5 the 

region of interest subset with the masked subset. The masked subset was the same mask 

applied to the both the two spectral subsets, ROI_1_Bands2_44 and 

ROI_1_Bands45_126. 
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Figure 3.4 – HyMAP Image of North Inlet/Winyah Bay NERR, South Carolina 

Both flight lines were atmospherically corrected using the ACORN (Atmospheric 

Correction Now) algorithm and georectified using the GLT (Geographic Look-Up Table) 

using the nearest neighbor approach that preserves the original pixel location.  No color 

balancing was performed on the imagery or histogram normalization procedures to 

maintain the originality of the digital number values. 
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Figure 3.5 – HyMAP BOB 4 Study Area & Mask Image 

As stated above the HyMAP imagery was initially subset into two subsets for ease 

of computation and to isolate any smaller variances in the mid-infra red region that would 

not be apparent if the visible region was analyzed in the same subset.  An additional 

aspect is the subset of bands 2-44 is also the same spectral range of the hand-held GER 

field spectroradiometer.  In order to map in situ derived endmembers the image subset 

had to match the spectral range as that of the in situ endmembers.  The in situ spectral 

library endmembers were then convolved to match the spectral range of the HyMAP 

imagery and a minimum noise transformation performed for inclusion in mapping with 

the in situ endmembers. 

HyMAP was one of the two principal sources of remotely sensed data was a 

rectified and radiometrically corrected HyMAP (Analytical Imaging and Geophysics, 

Boulder, CO.) image of North Inlet-Winyah Bay that was acquired at low tide in October 

of 2000.  This HyMAP sensor is a “whisk broom” array with data acquisition at an 

altitude of 2100 meters and has 126 bands at a spatial resolution of 4 x 4 meters.  The 

IFOV is 2.5 mr along track and 2.0 mr across track with a field-of-view of 61.3 degrees 

(512 pixels).  This imagery was collected in support of an EPA-funded Coastal Intensive 



 43

Sampling Network (CISNet) project. The second data set is a rectified and geometrically-

corrected AISA. 

The AISA imagery used in this research has a spectral resolution of seven bands 

and a range of 498 nm – 819 nm.  The spatial resolution is 0.5 X 0.5 meters which is 

adequate for visual identification of shellfish aggregates on patch reefs but are more 

difficult for visual identification of fringing reef structures.  The imagery was acquired by 

the Center for Advanced Land Management Information Technology (CALMIT) using 

the AISA sensor (Specim Corporation).  The AISA Plus sensor that was used for the 

North Inlet-Winyah Bay NERR over-flight has seven bands between 498 and 819 

nanometers and a spatial resolution of 0.5 X 0.5 meters.  This sensor has a push broom 

configuration with a narrow spectral resolution, configurable number of narrow spectral 

bands (~6 nm wide). 

Spectral analysis was done using the photogrametric and remote sensing software, 

The Environment for Visualizing Images (ENVI) versions 3.5, SP1 and 4.1, by Research 

Systems Incorporated, of Boulder, CO. 

Before treatments of the AISA or HyMAP imagery could be initiated, a mask of 

the study area was constructed.  Figure 3.6 shows the AISA image of the BOB4 study site 

showing bands 6, 4, and 2 (RGB).  This study site was selected due to its large patch reef 

with a variety of shellfish strata types present both on the reef and on patch reefs 

surrounding the study site.  The mask in effect negates pixels of water and vegetation for 

the Mininum Noise Transformation and subsequent analysis.  Using the 2-dimensional 

feature space viewer using ENVI, clusters of water and vegetation were classified and 
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used in construction of the mask.  Pixels not classified using the above method were 

hand-selected and classed. 

Figure 3.6 - AISA Flight Lines and Image Subset in North Inlet, South Carolina 

 
 Figure 3.7 shows the BOB4 study site of the AISA image while the second image 

shows the mask that was constructed and utilized for the Minimum Noise 

Transformation. 
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Figure 3.7 – AISA Image Study Site & Mask 

The mask was constructed using the feature space viewer within ENVI where 

larger groups of dense pixels or classes of pixels can be isolated and marked for masking.  

In Figure 3.7 the three different classes of pixels that were isolated are vegetation, water 

and sun glint and shadow.  The sun glint and shadow is an artifact within the data and not 

representative of the earth materials typically found in these areas.  This issue is explored 

in more detail in the Discussion section of this report. 

3.5 Radiometric and geometric correction 

The HyMap data set required no instrument radiometric correction as evidence in 

a Fast Forward Fourier Transform performed in ENVI.  Atmospheric correction of the 

HYMap data set was accomplished using the radiative transfer model algorithm 

Atmospheric Correction Now (ACORN) prior to spectral analysis.  Prior to spectral 

analysis, all derived images were geometrically corrected using the georeference from 

input geometry files that are supplied in the HyMap dataset.  Using the Input Geometry 

file (IGM) that is supplied with the HyMap Dataset, a super Geographic Look-up Table 

(GLT) is derived.  The IGM file contains the geolocation information for each original 

raw pixel.  The derived images are then georeferenced using the super Geographic Look-

up Table.  A HyMap image that is not spectrally unmixed will be geometrically corrected 
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and the two flight lines will be joined in a mosaic to produce a geometrically corrected 

reference image to use in image-to-image geometric correction.  

The AISA image was atmospherically corrected using a proprietary algorithm that 

is similar to an atmospheric radiative transfer model.  Down-welling irradiance 

information and atmospheric information was collected at the time of image acquisition 

with image georectification and atmospheric correction being accomplished in near real-

time.  Both the AISA image and HyMAP images were tested for geolocational accuracy 

with the use of ground control points within the study areas.  Global positioning system 

ground control points were collected during the field portion of the research and 

compared visually within each of the two images. The HyMAP image incurred the 

greatest geopositional inaccuracy of approximately 3-5 meters. While the AISA image 

had approximately 1 - 2 meter geopositional accuracy.  These measurements are only 

approximations due to a level of uncertainly associated with measuring GPS points to a 

known location within the study area. 

3.6 In-Situ Field Sampling and Spectral Library Creation 

3.6.1 Sample Site Delineation 

The study sites were delineated for the gathering spectral signatures of shellfish 

for a wide range of environmental conditions.  Figure 3.8 shows the location of each of 

the sample sites and the approximate location of each sampling point within the sample 

site and Table 3.1 lists the field study sites that were identified by their strata for spectral 

observations.  Conditions such as: abundance of shellfish, positions, (vertical and 

horizontal), and environmental condition, (wet/dry, various amount of mud present, 

algae, and detritus).  Site characterization of the oyster reefs were delimited using 
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definitions from the Shellfish Management section of the South Carolina Department of 

Natural Resource’s Intertidal Oyster Survey Field Data Sheet codes.  The Oyster Survey 

describes the reef strata with respect to bushels of live oysters per acre, presence or 

absence of vertical clusters, proportion of live oysters to shells and amount of mud 

present.  Each of the 10 listed strata or classifications are identified by a letter code.  

Appendix 7.1 includes a description of the Intertidal Oyster Strata descriptions and their 

letter designations. 

Figure 3.8 – Sample Sites in North Inlet / Winyah Bay NERR, South Carolina 
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Each sampling point was aggregated into like shellfish classes.  For each month the 

triplicates for each sampling point and for each shellfish class was averaged to obtain 

spectral curves for twenty classes.  

3.6.2 In-Situ Endmember Collection and Spectral Library Creation 

The nine identified sampling locations exhibited a variety of mixed strata’s within 

the sample sites, clusters of shellfish that were representative of relatively homogenous 

strata were identified and demarcated.  Transects were demarcated to represent vertical 

relief of the sampling reef from the waters edge, (below mean low tide) to the top of the 

oyster bank. No Man’s Friend 1, Bob Creek 4, and Jones Creek 3 sample points have a 

GPS point and distance measurement from the reference post to the sample point and 

demarcated using lengths of small diameter PVC pipe that has been placed into the reef.  

Bob Creek 1 through 3 and Jones Creek 1 and 2, have their sample point distance 

measured only relative to the reference post.  This was due to the relatively short distance 

to the reference post within a smaller sampling area.  The triplicates were averaged and 

converted to reflectance to obtain a single spectral curve for each sample point. 

Sampling points or clusters were classified according to South Carolina 

Department of Natural Resources Field Data codes for Intertidal Oysters.  There was 

some subjectivity in assigning strata to the DNR classifications, but the intent was to use 

the DNR classification as a means to describe and differentiate between groups of 

shellfish. 

All spectroradiometer measurements were taken using the GER 1500 

spectrometer held to a height at ~1.5 meters above the sample point.  This height resulted 

in an IFOV of ~ 1 inch square.  The washed shellfish at the Jones Creek #3 sample site 
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was read when dry and then again read wet.  This was to document any changes in the 

spectral reflectance due to the presence of water.  Relative terms were used to describe 

the wet/dry conditions included; dry (maximum dryness of the tidal cycle), semi-dry 

(more dry than wet), semi-wet (more wet than dry), and wet (wet shellfish and pooling of 

water interstitially).  Notes included descriptions of the amount of mud encrusting 

(heavy/medium/light/none), and any noted detritus, such as seaweed, leaves, grasses, etc. 

All spectroradiometer readings, descriptions, measurements, and records were 

documented in a bound field notebook and sampling points were digitally photo 

documented.  Endmembers of water, mud, vegetated areas such as Spartina alterniflora, 

and the concrete pad near Clambank Landing were used as controls. 

As illustrated in Figure 3.9, monthly spectroradiometer files were organized 

according to strata and condition (wet or dry).  The files were then converted from an 

Excel spreadsheet format to ASCII text file for importing into ENVI’s Spectral Library. 

All monthly ASCII exported files for each stratum were aggregated into a single folder.  

At the end of the sampling period, each strata folder contained all spectroradiometer 

readings converted to reflectance.  The spectroradiometer values were averaged into a 

single spectral reflectance curve for each stratum.  Appendix II contains sampling dates 

from June 2002 through July of 2003. 
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Figure 3.9 – Aggregation of Spectral Files 

Primary aggregation was the importation of each spectral file into Microsoft 

Excel, conversion from radiance to reflectance, the averaging of the triplicates for an 

average signature of a particular sample point, and charting of the individual reflectance 

and average signatures.  The file structure was organized in Excel by month with the raw 

data, radiance and averaged triplicates in reflectance.  Further aggregation was necessary 

to have each strata represented and reduce the number of individual spectral signatures 

for mapping. 

As shown above in Figure 3.9 the individual sample points were further 

aggregated by averaging all the individual reflectance signatures for a given area to create 

an averaged reflectance across a larger spatial extent with similar strata.  Each sampling 

point had a spectral reference signature recorded to calculated reflectance so it was not 

possible to average individual radiance signatures and process into reflectance.  Appendix 

7.3 explains which individual sample points were aggregated into secondary groupings. 
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Spectroradiometer Readings 
(Mean of triplicates in Excell format)

Jones Creek 1 & 2 

Bob’s Garden 1 - 4 

Jones Creek 3 

No Man’s Friend 1 - 2 

For Each Monthly Sampling Event 
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From Appendix 7.3, BOB A through C was comprised from BOB 1 through 3 

sample sites.  These sample points were located within the same geographic proximity 

and were differentiated by strata that corresponded with the vertical rise of the reef.  

Another aggregation from the averaged triplicates was the aggregation by sample site 

showing all twelve months of spectral signatures.  This is useful for visual discrimination 

for annual phenological changes that may occur within the sample points.  A good 

example of this was BOB4_12 which is characterized by washed bright shell but during 

the winter months there is a preponderance of macro-algae growth that partially 

obfuscates the washed shell.  Another use of this type of aggregation was any noted 

spectral changes with the concrete pad.  It is noted that the acquisition of spectral 

signatures were taken at precisely the same point on the concrete pad that is used as a de-

facto control but shows slight variations in the spectral response due to slight variations 

in the concrete pad.  Figure 3.10 shows this graphically with the triplicate averaged 

spectral signatures for all months.  Additionally the spectral files were averaged into a 

single monthly averaged spectral curve for each sample site to look for changes 

throughout the year for each sample site.  Figure 3.11 shows a comparison of BOB4_13 

and NMF2 (mud) with BOB4_15, BOB4_2, and NMF1_11 shellfish (both wet and dry 

separate curves).  This graph also shows and visual differences between shellfish and 

mud. 
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Figure 3.10 – Clambank Concrete Pad Composite 
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Figure 3.11 – Time Composite Comparison of Mud and Shellfish 

Clambank Concrete Pad Composite

0

0.1

0.2

0.3

0.4

0.5

0.6

35
2

37
8

40
4

42
9

45
4

47
8

50
3

52
7

55
1

57
5

60
0

62
4

64
8

67
2

69
5

71
9

74
2

76
6

78
9

81
2

83
5

85
7

88
0

90
3

92
5

94
7

97
0

99
2

10
14

10
37

10
59

10
81

Wavelength (nm)

R
ef

le
ct

an
ce

CONCRETE PAD AUG02

CONCRETE PAD SEPT02

CONCRETE PAD OCT02

CONCRETE PAD NOV02

CONCRETE  PAD DEC02

CONCRETE PAD   JAN03

CONCRETE PAD   FEB03

CONCRETE PAD FEB03
OVERCAST

CONCRETE PAD MARCH

CONCRETE PAD MARCH2

CONCRETE PAD APRIL

CONCRETE PAD MAY

CONCRETE PAD JUNE 03

CONCRETE PAD2 JUNE 03

CONCRETE PAD_A JULY

CONCRETE PAD_B JULY



 53

3.7 Statistical Analysis 

Statistical analysis design involved the analysis of the spectral signatures from the 

year-long in situ sampling that resulted in the creation of a spectral library and spectral 

image endmembers that were derived from the HyMAP imagery.  The HyMAP imagery 

was the imagery of choice for statistical analysis owing to the greater number of 

contiguous bands (126 bands from ~450- 2400 nm) and narrower band widths than the 

AISA (7 bands from 498 nm – 819 nm).  Pixels were delineated that correspond with 

areas where the in situ spectral signatures were collected as part of the annual field 

collection regimen.  Selected pixels were analyzed individually and averaged spectral 

signatures to represent the aggregated spectral and spatial characteristics of the in situ 

endmembers. 

The objectives of the statistical analysis were: 

• Objective One:  With regard to in situ sample points, such as BOB4_1, there were 

three spectral readings taken at slightly different points around the sample point.  

If the earth material (shellfish) present within the sample point is considered to be 

of similar shellfish strata, how similar or different statistically are the three 

spectral readings?  Does the type of oyster strata or material such as mud or the 

concrete pad make a statistical difference in the spectral signature of the 

triplicates? 

• Objective Two:  The sample points were aggregated by similar strata in larger 

areal spectral representations by averaging the individual spectral reflectance 

signatures but how different are the sample points that were aggregated together, 
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i.e. does the average of triplicates from BOB4_1 differ from the average of the 

triplicates from BOB4_2? 

• Objective Three:  With a sampling of pixels from the HyMAP imagery from 

locations of the in situ sampling as described above, do the spectral signatures 

from the HyMAP imagery differ from the in situ spectral signatures? 

The process of selecting image endmembers is done through the Pixel Purity 

Index and the N-Dimensional Visualizer by a trial and error process of selection and 

aggregation of individual endmembers.  The criterion for merging endmembers into 

“bundles” that represent the spectral variability of the earth material of interest is by 

implementing the Jeffries-Matusita Transformed Divergence algorithm.  Transformed 

Divergence is computed using the mean and covariance matrices from the imagery 

and measures the degree of divergence or separability of two classes (Jensen, 2005).  

This technique works well with endmembers derived from the imagery using the 

above process but this algorithm cannot be used on in situ endmembers independent 

of the imagery.  Thus there was not parity in the research design when comparing 

imagery spectra that was derived using the above method with in situ spectra.  As a 

compromise, image endmembers utilized for the MTMF mapping were exported as 

ASCII text and analyzed using the non-parametric Wilcoxon Signed-Rank test. 

The Wilcoxon Signed-Rank test is the non-parametric version of the paired t-test 

that tests whether the median for a data set has a particular value.  Using the two-sided or 

signed rank of the Wilcoxon test has the ability to test a null hypothesis that the two 

variables have equal centers of symmetry.  It does not assume the distribution is Gaussian 
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in nature.  The Wilcoxon Signed Rank test was used for the last objective as described 

above. 

Although ANOVA is usually used with normally distributed data, we used 

ANOVA 2-Factor analysis to test the hypothesis of no difference between triplicates of in 

situ samples taken in three different spots at a single sample point, i.e. BOB4_1 

triplicates (objective one from above).  The ANOVA 2-Factor test was used for the first 

two statistical analysis objectives. 

For this portion of the research we did not examine all sample point triplicates, or 

all possible combinations of aggregated in situ data to determine differences or 

similarities between aggregated in situ or image endmembers.  Given time constraints it 

was decided to use a small group of in situ sample of data points within the BOB4 sample 

area, the No Man’s Friend Sample sites and final image endmembers from the HyMAP 

imagery.  In comparing the HyMAP image endmembers with the in situ endmembers it 

should be noted that comparisons were done with in situ data that were convolved to 

match the HyMAP imagery and the HyMAP imagery was subset to reflect the spectral 

range of the in situ data.  This aspect of the research while intriguing is not central to the 

purpose and intent of the research but should be the subject of future research using an 

intense and rigorous statistical analysis. 

The ANOVA 2-Factor analysis of triplicates found results that were consistent 

with the type of material being analyzed.  Triplicates from more homogeneous materials 

tended to have less overall variance.  Mud from No Man’s Friend 2, and bright sand from 

the beach fronting the ocean were some of the materials that exhibited the least amount of 

overall variance.  Conversely, variance was greatest with materials that exhibited the 
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greatest heterogeneity such as live, vertical, densely clustered oysters on the west side of 

BOB4.  Principally BOB4 sample points 14 through 16 and 19 through 22.  Oyster strata 

such as “D”, “B” or “F” stratums had mixed results for variances between triplicates. 

Analyzing regions of the electromagnetic spectrum individually (blue, green, red 

and shortwave infrared regions) between triplicates resulted with the smallest variances 

in the blue, green and red regions and the greatest variances found further out in the short 

wave infrared regions.  Analysis of the spectral regions was carried out on BOB4_1 

through BOB4_4 sampling points and is representative of “D” oyster strata.  These 

findings may not reflect results from more or less homogenous oyster strata. 

Using the Wilcoxon test it was found that the averages of triplicates are 

significantly different than the averages from another sample point within the same oyster 

strata.  This analysis was performed between BOB4_1 and BOB4_2.  In addition, 

averaged image spectral signatures were statistically different than averaged in situ 

spectral endmembers for the same area of BOB 4 sample site.  This is significant because 

when mapping shellfish reefs using in situ derived endmembers, lower mapping 

accuracies have been reported than when image derived endmembers are used (Elmore, 

et al., 2000). 

3.8 Remote Sensing Spectral Analysis 

The methodology of this research utilized spectral endmembers derived from 

remotely sensed imagery and in situ data collection of spectral signatures of shellfish 

strata.  Imagery was radiometrically and geometrically corrected to insure accurate GPS 

location and pixel registration agreement.  The imagery was spatially subset into Regions 

of Interest, (ROI’s) to ease computation and memory burdens.  The use of the MTMF 
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methodology was first used to map shellfish distributions using image derived spectral 

endmembers.  The steps taken were to place the data in minimum Noise Transformed 

(MNF) space, create a Pixel Purity Index (PPI), define extreme endmembers using the n-

Dimensional Visualizer, and then the refined endmembers were mapped using the MTMF 

methodology.  In Situ data was convolved to match a specific imagery data set then 

placed into MNF space for mapping using the MTMF method. 

 Mapping shellfish resources using in situ derived endmembers first required a 

decision regarding the level of aggregation of the in situ spectroradiometer signatures that 

would best yield a spectral signature as found at the same scale within the imagery.  This 

is a very small area of interest and consequently the second level of aggregation as 

described above was used as inputs for spectral unmixing.  The second level of 

aggregation of the in situ spectral endmembers was aggregated to represent the same 

patch type of shellfish aggregation and health.  The in situ spectral reflectance sampling 

points that fell within an area of similar shellfish groups such as the SCDNR strata 

representations of “F” or “F1” were averaged.  These averaged spectral signatures 

convolved to match the AISA wavelength as described above and then a minimum noise 

transformation was applied to the spectra.  They were then saved as a spectral library 

within the ENVI software to be utilized as inputs for mapping using the MTMF 

methodology.  The AISA and HyMAP imagery was treated as shown in figure 3.12 

showing the steps that were used in the spectral analysis process as described in the 

ENVI User’s Manual. 
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Figure 3.12 – Spectral Analysis of Remotely Sensed Imagery 
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3.8.1 Minimum Noise Transformation (MNT) 

The first treatment of the imagery was the elimination of any earth materials of 

non-interest such as water and vegetation within the region of interest.  All shellfish to be 

mapped were assumed to be near the waters edge or reposing on the patch reef.  We were 

interested only in patch or fringing reef structures.  The process of masking was carried 

out by using the 2-dimensional feature space viewer within the ENVI software.  The 2-

dimensional feature space viewer places the pixel values of one band on the axis of a 

scatter-plot and another band on the opposing axis.  Usually the bands chosen have one 

band that characterize the material of interest, such as a band in the near infrared for 

vegetation and another band to act as contrast.  The resulting “shape” of the data cloud is 

then density sliced to show higher areas of denser pixels.  These areas are synonymous 

with a material within the imagery.  When selected, the pixels are colored within the 

scatter-plot and appear within the imagery as colored pixels.  In this way materials of 

interest within a scene were selected and placed into a class.  Once all the pixels of 

unwanted materials were selected, a masking band was created from the selected pixels 

which were applied during the Minimum Noise Transformation process. 

The next treatment was the reduction of the spectral dimensionality of the 

imagery.  Hyperspectral imagery is usually defined as having many contiguous spectral 

bands (Jensen, 2001).  Many of these bands contain redundant information and the 

Minimum Noise Fraction Transform (MNF Rotation) is designed to eliminate 

redundancy and segregate any noise in the image (Boardman and Kruse, 1994).  This is a 

process with two cascaded Principal Component transformations.  The first Principal 

Component transformation is based upon the estimated noise covariance matrix which 
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then decorrelates and scales the noise within the data resulting in no band-to-band 

correlations and the noise has unit variance.  The second stage takes the noise-whitened 

data and performs basic Principal Component transformation.  For further spectral 

processing the associated images (often called in this report eigenimages) and the 

eigenvalues (or eigenvectors).  There was a parsing of the images and statistics into two 

groups; those with the highest eigenvalues and coherent eigenimages and those composed 

of the lower eigenvalues (with near-unity values) and eigenimages that were noise-

dominated.  By selecting the eigenimages that have the highest eigenvalues and thus the 

most variance the image dimensionality was reduced to the bands with the most 

information for further processing. 

3.8.2 Pixel Purity Index (PPI) and the n-Dimensional Visualizer 

The third treatment relates to the input of either in situ endmembers that have also 

been transformed via the above process or endmembers of interest can be derived from 

the imagery itself through a process known as the Pixel Purity Index (PPI).  The Pixel 

Purity Index was used to find the most spectrally pure pixels or extreme pixels.  They are 

extreme in the sense that they are on the furthest edges of the pixel data cloud.  The PPI is 

computed by repeatedly projecting n-dimensional scatter-plots onto a random unit vector 

(ENVI User’s Guide, 2005).  Pixels at the end of the unit vector are counted as extreme 

and the pixels are then indexed as to the number of times they are marked as extreme.  

The output is a single band image with pixel brightness denoted as the count or number 

of times it was marked as extreme.  Parameters the user can set are the threshold factor 

setting that determines the threshold for extreme pixels.  A threshold factor setting of 5 

marks all pixels at the end of a vector extreme that are within five digital numbers (high 
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and low) of the extreme pixels as extreme.  The higher the setting, more pixels will be 

counted as extreme but are less likely to be spectrally pure.  The other parameter that is 

set is the number of iterations that the algorithm will run.  To know when all extreme 

pixels have been found and marked, a graph is displayed showing the number of 

iterations (x-axis) and the number of pixels marked as extreme (y-axis).  When the curve 

flattens out at the top for a number of iterations then it is safe to assume that most of the 

significant extreme pixels have been marked and indexed. 

If in situ endmembers were used to map an earth material, then the pixel purity 

index process was not needed.  To utilize in situ endmembers as input for mapping they 

must be in the same Minimum Noise Factor transformed space as the image and placed 

into the ENVI spectral library for use in the MTMF algorithm. 

The next treatment is the visualization of the PPI in n-dimensional space.  This 

allows the user to view and refine the number of endmembers in multiple dimensions of 

space to visualize the PPI data cloud from as many different angles as necessary to select 

the most spectrally pure endmembers.  The user then has the options of exporting the 

endmembers to view the pixels within the image in geographic space and saving the 

bundles or collections of endmembers that represent a single class of earth material.  

Endmembers that are exported for viewing within the imagery are treated as roi’s 

(regions of interest) which can then be tested statistically using the Jeffries-Matusita 

Transformed Divergence test for endmember separability.  Endmembers that are 

statistically similar can then be merged together into a single class.  The selection and 

refinement of endmembers presents one of the most subjective portions of spectral 

analysis.  The inclusion or exclusion of endmembers within a class is most problematical 
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when trying to gather endmembers that represent the spectral variability of the earth 

material within the image. 

3.8.3  Mixture Tuned Matched Filtering 

The last treatment is the mapping of the endmembers using one of the available 

mapping algorithms.  The two algorithms that were considered for mapping in this 

research are Linear Spectral Unmixing, which was originally proposed and MTMF, 

which was the method chosen for this research.  MTMF was chosen over Linear Spectral 

Unmixing because in Linear Spectral Unmixing all endmembers contained within the 

image must be derived.  With both Linear Spectral Unmixing and MTMF there is an 

inherent limitation in the number of endmembers that can be mapped, there can only be 

n-1 endmembers mapped, where n is the number of eigenimages used in the analysis.  A 

limitation of the method becomes apparent when the image may contain more 

endmembers than there are available eigenimages.  Since the object of the research is to 

map shellfish and not water or vegetation, it makes sense to mask these elements and not 

include them in the analysis.  Additionally, when the Minimum Noise Fraction 

transformation is ran on the image, the vegetation and water will usually encompass the 

majority of the variance within the image and variances between mud and shellfish are 

much smaller by comparison.  Thus when the eigenvalues are calculated the higher 

values will be for the water and vegetation with the smaller eigenvalues relegated to mud 

and shellfish, which may be lost within the noise dominated (near unity variance) 

eigenimages.  MTMF is also called partial-unmixing because it looks just for the 

endmembers of interest while suppressing the remaining spectral signatures as 

background noise. 
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The results from MTMF include two gray-scaled images for each mapped 

endmember.  The first is the MTMF Score image that shows the relative degree of match 

to the reference endmember scored from just above zero to one being a perfect match.  

Pixels mapped just around zero are background pixels that were suppressed.  It is 

common to stretch the values in the right hand side of the histogram from just above zero 

to one to show pixels that are mapped correctly.  The second gray-scaled image is the 

infeasibility image that shows values in noise-sigma units to indicate the feasibility result.  

Figure 3.13 shows a diagram of how “noise-sigma units which vary in digital number 

scale with matched filter values”, (RSI ENVI, 2004). 

Figure 3.13 – MTMF- Noise Units 

Pixels that are correctly mapped will have a high MTMF value and a low 

infeasibility value.  Pixels that have a high MTMF value and a high infeasibility value are 

“false positive”.  To refine mapped endmembers and identify correctly mapped pixels the 

two-dimensional viewer is used to show the MTMF score on one axis and the 



 64

infeasibility scores on the other.  Pixels that are identified as correctly mapped can be 

exported as regions of interest and treated as inputs into additional rounds of mapping. 
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3.9 Accuracy Assessment  

3.9.1 Introduction 

Assessing the relative accuracy of the mapped oysters presented some unique 

challenges, such as what constitutes a “true” map of oysters with which to compare 

against.  In creating the “true” map of oysters, the issue of assessing a raster map of one 

spatial resolution against another raster based of a differing spatial resolution becomes 

problematic.  Traditionally, remotely sensed imagery has an accuracy assessment 

implemented by comparing the number of pixels classified of one class against the 

number of “true” pixels but when the spatial resolutions of the mapped images are 

different than the “true” image, this method will not work.  An alternative technique of 

deriving the accuracy of a classified image is by converting the image from raster to a 

vector image and compare by areal coverage rather than number of pixels.  This method 

is not without problems since it assumes a near perfect conversion from raster to vector 

without loss of area. 

The use of a relatively large pixel size as compared to the material of interest one 

must take into account the large areal extent of the pixel.  The HyMAP imagery pixel 

size, as stated above is 4 X 4 meters.  The digital number of each pixel is the composite 

of the earth material found within the pixel.  A 4 X 4 meter rectangle within the estuary 

may include areas of water, mud, vegetation, (although attempts have been made to 

exclude vegetation and water) and shellfish.  The MTMF method only identifies the 

probability of the presence of the earth material of interest.  It does not include the 

relative abundances of the material of interest or and more importantly, the location of 

the shellfish within the 4 x 4 meter area.  This presents a unique problem when 



 66

comparing the areal extent of two different vector polygons.  It is assumed for this 

research that the presence of oysters, (presence is binary, yes or no) is complete and 

evenly distributed within the areal extent of the pixel.  The problems of performing the 

classification accuracy assessment are inaccuracies generated through the georectification 

process and are exhibited in spatial misalignment between the three layers.  Each layer 

must align correctly within a very small tolerance since the size of the oyster reefs range 

from small clusters to large patch reefs.   Establishing image geocorrection within a small 

RMS is problematic by itself.  Positions of ground control points are not easily found 

within the estuary.  A point of land may or may not be in the same geographic location 

from one time frame to another as forces of accretion and degradation may have altered 

the position of the point of land in a relatively short period of time.  Moreover, correct 

alignment may not be attainable since level of tide stage when each image was acquired 

was different so a visual “rubbersheeting” or re-geolocation based upon visual cues is 

misleading and inaccurate.  But an accuracy assessment with these caveats in mind was 

performed to assess the relative accuracies of using two different spatial and spectral 

resolution sets of imagery in conjunction with comparing in situ derived and image 

derived endmembers. 

The term “relative accuracy” used here in this research is used to denote the 

inherent problems faced when assessing the Producer’s and User’s Accuracy.  The 

process that was used to create the accuracy assessment follows the steps of converting 

the raster classed images to vector and implementing a model that was developed using 

ESRI’s ArcGIS Model builder.  The model developed basically creates a GIS layer that is 

the intersection of the mapped or “found” oysters with the “true” map of oysters.  The 
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output layer is the “correctly” mapped oysters and then the symmetrical difference is 

found between the “truth” oyster map and the “correct” oyster map.  The out put from 

this operation results in oysters that were not mapped but should have been included or 

errors of omission.  The correct oyster map also has the symmetrical difference found 

between the correct oyster map and the found or mapped oysters to derive oysters that 

were mapped but should not have been included, or errors of commission.  

Jensen (1996) defines Producer’s Accuracy as the total number of correct pixels 

in a category divided by the total number of pixels of that category and is a measure of 

omission.  The User’s Accuracy he defines as the total number of correct pixels in a 

category divided by the pixels actually classified in that category.  Since this research 

converted the pixels to polygons instead of using number of pixels, area of the polygons 

was substituted in lieu of pixel counts.  

3.9.2 AISA and HyMAP Accuracy Assessment 

The creation of the reference image was accomplished using a GeoVantage 0.25 

X 0.25 meter spatial resolution image of the BOB4 study area and surrounding oyster 

reefs.  The spatial resolution is small enough that larger patch oyster reefs and fringing 

reefs are easily identified visually.  The methodology used to create the reference image 

was to use Visual Learning System’s Feature Analyst to classify the larger patch reefs 

and fringing reefs.  Feature Analyst uses an iterative process of hierarchical learning with 

user input to “learn” correct objects that are classified by context and shape.  The Feature 

Analyst is an extension to ESRI’s ArcGIS.  Smaller isolated clusters usually found in the 

middle of patch reefs surrounded by mud or on the fringing reefs are harder to classify 

using Visual Learning System’s Feature Analyst and were identified and classified using 



 68

field images and a priori field knowledge collected during the extensive field data 

collection phase of the project. 

Prior to the accuracy analysis the raster images the data was explored to define the 

class of oysters to be exported to vector.  Since we were concerned only with presence or 

absence of oysters, the data was parsed into a single class that held only the probability of 

oysters being present.  The cut-off from approximately above zero to the maximum data 

value needed to be elucidated.  Knowing the data range the raster image was reclassed to 

include only one class, the class that indicates the presence of oysters.  The other classes 

of data were eliminated that did not include the presence of oysters.  The second 

treatment was then to convert the raster oyster class to polygons.  There was no 

generalization of the polygons in the conversion process.  The third treatment of the 

rasterized polygons was to accurately as possible “rubbersheet” the HyMAP imagery to 

spatially match the patch reefs and fringing reefs location.  This was undoubtedly the 

most subjective aspect of the accuracy assessment process.  User input was utilized to 

match the rasterized polygons with specific entities displayed in the GeoVantage 

“apparent truth” oyster map.  User input relied heavily upon a priori field experience, 

field notes and photographic documentation to rubbersheet the HyMAP polygons. 

The fourth treatment in the accuracy assessment section describes the procedure 

used to assess the relative accuracy of the AISA and HyMAP oyster classification.  The 

assessment was implemented in two AISA trials that utilized image derived and in situ 

endmembers.  Because the HyMAP imagery was spectrally subset into two spectral 

subsets, bands 2-61 and 2 – 44.  The original band subset was created to increase the 

number of bands into the near infra-red region to incorporate unique spectral information 
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which to map oysters.  The data sets were subset spectrally and spatially for two reasons: 

1) creating a smaller spectral and spatial subset decreases computation time and file sizes.  

This is especially important because in the spectral analysis many intermediate files are 

created, creating a potential problem for storage.  2) Spectral regions of the 

electromagnetic spectrum may be weighted higher in the MNF process than other regions 

and by creating spectral subsets, smaller variances will not be lost in the MNF process.  

The band 2- 61 utilized just image derived endmembers and in situ endmembers were not 

used with this set.  The spectral range of the bands 2-61 set was greater than the range of 

the field hand-held spectroradiometer.  HyMAP spectral subset 2-44 was assessed from 

mapping utilizing image derived spectral endmembers, bright shell endmembers (image 

derived), mixed shell (image derived), and in situ endmembers.  There were six separate 

accuracy assessments done between the AISA and HyMAP images.  

Figure 3.14 shows the data processing steps that were implemented in ArcGIS’s 

Model Builder to shorten analysis time and automate the steps required to process the 

data. 

 

 

 

 

 

 

Figure 3.14 – Flowchart of Accuracy Assessment Implemented in ArcGIS 
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The two base coverages utilized for the accuracy assessment were the 

GeoVantage “apparent truth” oyster map and the coverage of “found” or mapped oysters 

from the MTMF process to be assessed.  The first treatment was to intersect the 

coverages to create a correctly mapped oyster coverage or polygon area of commonality.  

The area was then calculated for the correctly mapped oyster polygons.  Second treatment 

was the calculation of the symmetrical difference between the correctly mapped oysters 

with the “apparent truth” GeoVantage polygons.  The area was again calculated from the 

resulting coverage from this operation.  This treatment resulted in the areas that were 

omitted from the classification but should have been included, errors of omission.  The 

third treatment was the same as the last treatment with the exception that the symmetrical 

difference was done between the correctly mapped oysters and the found or mapped 

oysters with a concomitant area calculation.  This resulted in errors of commission or 

oysters that were mapped as initially correct (found) but should have not been included. 

The final treatments were to export the table record that contain the area of the 

polygons from the correctly mapped coverage, omitted polygons, and incorrectly mapped 

polygons.  Only those polygons that fell within the common area of the “apparent truth” 

GeoVantage coverage and the coverage that was assessed were included in the final 

calculations.  This was done to exclude polygons that were outside of the spatial extents 

of one or both coverages.  The exported data from the coverages were imported into 

Excel and percent relative accuracies were calculated for each of the coverages. 
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Chapter 4. Results 

4.1 Introduction 

The results presented in this section show the most recent effort of mapping after 

several revisions using the 2-dimensional scatter-plot to review and select endmembers.  

The purpose in showing the last two mapping trials is twofold: first, to illustrate the 

technique of using the scatter-plot to isolate and refine endmember bundles and 

secondary, remarkable changes in the results showing the before and after effect of using 

this technique.  The results section, like the Methodology section, presents the results of 

the in situ spectral libraries that were collected and constructed through the course of a 

year and applied to the AISA and HyMAP imagery.  The principal study sites used to 

map the in situ and image derived endmembers were BOB4, No Man’s Friend 1 and No 

Man’s Friend 2 (mud) field sampling sites.  The process of deriving the spectral shellfish 

endmembers from the AISA and HyMAP data sets are shown and the results are then 

applied to mapping the shellfish distributions from the study sites in both the AISA and 

HyMAP datasets. 

Mapping shellfish using field derived spectral endmembers first entailed adjusting 

the bandwidth of the spectral endmembers of the GER 1500 Spectroradiometer to mimic 

the number of bands and spectral range of the remotely sensed imagery that is to be used 

to map the shellfish.  Specifically, the GER spectroradiometer that was used to collect the 

in situ shellfish spectral signatures has 512 bands (spectral range of 350nm – 940 nm), 
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AISA has 7 bands (spectral range 498nm – 819 nm) and HyMAP has126 bands (spectral 

range 0.4529 – 2.4822 nm).  Depending upon the spectral range and number of bands, 

each remotely sensed data set needs to have the in situ spectral signatures convolved to 

match the specific remotely sensed imagery platform.  The in situ spectral signatures 

were then processed through a minimum noise transformation in the same manner as the 

imagery.  The last step in processing the in situ spectral data is to compile then into a 

convolved spectral library that was then used as input into a mapping process such as the 

MTMF mapping. 

4.2 In-Situ Spectroradiometer Data 

 4.2.1 Field Sampling Sites 

The study sites were selected and delineated for the gathering of spectral 

signatures of shellfish in a wide range of environmental conditions.  These conditions 

include the: abundance of shellfish, positions (vertical and horizontal), and environmental 

state, (wet/dry, various amounts of mud, algae, and detritus present).  Site 

characterization of the oyster reefs were conducted using definitions from the Shellfish 

Management section of the South Carolina Department of Natural Resource’s Intertidal 

Oyster Survey Field Data Sheet codes.  The Oyster Survey describes the reef strata with 

respect to bushels of live oysters per acre, presence or absence of vertical clusters, 

proportion of live oysters to shells and amount of mud present.  Each of the 10 listed 

strata or classifications are identified by a letter code.  See Appendix 7.1 for a complete 

description of the Intertidal Oyster Strata descriptions and their letter designations.  Table 

4.1 lists the field study sites that were identified by their strata for spectral observations. 
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Table 4.1 - In situ Spectral Sampling Sites 
Site Description Notes 
JC 1 Jones Creek – “F1” Strata Contains F1 and F strata. Linear feature 

along bank of creek with Spartina a. on top 
of bank. 

JC 2 Jones Creek – “C” Strata Island feature in creek 

JC 3 Jones Creek – Washed Shell Little to no live shellfish, all horizontal, some 
with inside of shell face up. 

Bob 
1 

Bob Creek – “G” Strata Island feature in creek 

Bob 
2 

Bob Creek – “E” Strata Island feature in creek 

Bob 
3 

Bob Creek – “C” Strata Island feature in creek 

Bob 
4 

Bob Creek – “D” Strata Island feature in creek 

NMF 
1 

No Man’s Friend Creek – “G” 
Strata overall 

Large island feature with Spartina A. on west 
side of island. Also contains “D”, F1”, and 

“B” strata 

NMF 
2 

No Man’s Friend Creek – Mud Control for mud endmember. No vegetation 
present. Also has enough vertical relief to 

obtain semidry and wet mud 
spectroradiometer readings. 

60 
Bass 

60 Bass Creek – “E” like strata Shellfish with sand filled interstitial spaces, 
tightly packed and completely covering the 

substrate. 

 
Each field sampling point was aggregated into like shellfish classes.  For each 

month, the triplicates for each sampling point within each shellfish class were averaged to 

obtain spectral curves for twenty classes. 



 74

Figure 4.1 – Sample Sites North Inlet, South Carolina 
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Within the nine identified sampling locations, there were clusters of shellfish 

representative of “relatively” homogenous strata as well as a variety of mixed strata in 

and around each sampling locations.  Transects were demarcated to represent vertical 

relief of the sampling reef from the waters edge, (below mean low tide) to the top of the 

oyster bank.  No Man’s Friend 1, Bob Creek 4, and Jones Creek 3 sample points have 

GPS point and distance measurement from the reference post to the sample point and 

demarcated using lengths of small diameter PVC pipe that was placed into the reef.  Bob 

Creek 1 through 3 and Jones Creek 1 and 2, have their sample point distance measured 

only relative to the reference post.  This is due to the relatively short distance to the 

reference post and a smaller sampling area.  Figure 4.1 shows the locations of the sample 

points for each of the sample sites which were color coded to indicate which group each 

sample point belonged to in the secondary level of aggregation.  In post-processing, the 

triplicates were normalized to apparent reflectance, and then averaged to obtain a single 

spectral curve for each sample point.  

Sampling points or clusters were classified according to South Carolina 

Department of Natural Resources Field Data codes for Intertidal Oysters.  There is 

recognition that there are some ambiguities in the DNR classification, but the intent is to 

use the DNR classification as a means to describe and differentiate between groups of 

shellfish.  

All spectroradiometer measurements were taken using a GER 1500 (Geophysical 

& Environmental Research Corp (Millbrook, NY)) held at a stable height of ~ 1.5 meters 

above the sample point, (the height of holding the spectroradiometer at chest high, ~6 ft. 

tall). This height resulted in an IFOV of 1” x 1”.  The spectroradiometer is calibrated 
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from 350 nm to 1050 nm which roughly correlates with the long wave ultraviolet to the 

near infrared region (Jensen 2000).  There are 512 bands with a spectral resolution of 3 

nanometers at Full Width Half Maximum.  The washed shellfish at the Jones Creek #3 

site was sampled in dry and wet conditions.  This was to document any changes in the 

spectral reflectance due to the presence of water.  Relative terms were used to describe 

the wet/dry conditions included; dry (maximum dryness of the tidal cycle), semi-dry 

(more dry than wet), semi-wet (more wet than dry), and wet (wet shellfish and pooling of 

water interstitially).  Notes included descriptions of the amount of mud encrusting 

(heavy/medium/light/none), and any noted detritus, such as seaweed, leaves, grasses, etc.  

All spectroradiometer readings, descriptions, measurements, and records were 

documented in a bound field notebook and sample points were digitally photo 

documented.  Endmembers of water, mud, vegetated areas such as Spartina alterniflora, 

and the concrete pad near Clambank Landing were used as controls. 

As illustrated in Figure 4.2, monthly spectroradiometer files were organized 

according to strata and environmental condition (wet or dry).  The files were then 

converted from an Excel spreadsheet format to ASCII text file for importing into 

Research Systems, Inc. (Boulder, CO) The Environment for Visualizing Images (ENVI) 

software version 4.1 Spectral Library.  All monthly ASCII exported files for each stratum 

were aggregated into a single folder.  At the end of the sampling period, each strata folder 

contains all spectroradiometer readings converted to reflectance.  The spectroradiometer 

values were then averaged into a single spectral reflectance curve for each stratum.  

Appendix 7.4 contains sampling dates and tide levels from June 2002 through July of 

2003. 



 77

 

Figure 4.2 – Aggregations of Spectral Files 

Primary aggregation was the importation of each spectral file into Microsoft 

Excel, conversion from radiance to reflectance, the averaging of the triplicates for an 

average signature of a particular sample point, and charting of the individual 

reflectance and average signatures.  The file structure is by month and contains raw 

data, Excel format radiance and reflectance, and averaged triplicates.  Further 

aggregation was necessary to have each strata represented and reduce the number of 

individual spectral signatures for mapping. 

As shown above in Figure 4.2, the individual sample points were further 

aggregated by averaging the individual reflectance signatures at monthly intervals.  Since 

each sampling point had a spectral reference signature recorded, it was not possible to 

average individual radiance signatures and post-process into reflectance.  Appendix 7.3 

shows the aggregation process of how individual sample points were aggregated into 

secondary groupings. 

Spectroradiometer Readings 
(Download in ASCII Format) 

Jones Creek 1 & 2  

Bob’s Garden 1 - 4 

Jones Creek 3 

No Man’s Friend 1 - 2 

For each file -Converted 
to apparent reflectance in 

Excell format from 
ASCII text format

For each sample point – 
Apparent reflectance 

triplicates averaged and 
charted

Spectroradiometer Readings 
(Mean of triplicates in Excell format)

Jones Creek 1 & 2 

Bob’s Garden 1 - 4 

Jones Creek 3 

No Man’s Friend 1 - 2 

For Each Monthly Sampling Event 
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From Appendix 7.3, there were 14 sample points associated with sample sites 

BOB 1 through BOB 3, these sample points were averaged together to form BOB A 

through C (4 sample points from BOB 1, 4 sample sites from BOB 2, and 6 sample points 

from BOB 3).  Since these sample points are located within the same geographic 

proximity, they are differentiated by strata that align with the vertical rise of tide.  

Another aggregation from the averaged triplicates used all twelve months of spectral 

signatures by sample site.  This is useful in looking at the annual phenological changes 

that may occur within the sample points.  For example, sample point BOB4_12 is 

characterized by mostly washed bright shell but, in the winter months, there is a 

preponderance of macro-algae growth that obfuscates the washed shell.  Spectral changes 

can be monitored using the aggregation of the monthly spectral data acquired on the 

concrete pad at Clambank.. Figure 4.3 shows these monthly triplicate averaged spectral 

signatures.   These data were acquired at precisely the same point on the concrete pad and 

were used as a de-facto control, showing subtle variations in the spectral response due to 

slight surface variations in the concrete pad.   
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Figure 4.3 - Concrete Pad Composite at Clambank Site, North Inlet, SC 

4.3 Remotely Sensed Spectral Data Analysis 

4.3.1 Introduction - Spectral Data Analysis 

The methodology of this research utilizes spectral endmembers deduced from 

remotely sensed imagery and in situ data collection of spectral signatures of shellfish 

strata.  Both sets of imagery (AISA and HyMAP) were subset into Regions of Interest 

(ROI’s) to ease computation and memory burdens.  Regions were subset to be inclusive 

of the in situ sampling sites and surrounding oyster reefs.  There were 6 Regions of 

interest for each set of imagery: 1- Jones Creek 1 and 2, 2 - Bob’s Creek 1 through 3, 3 - 

Bob’s Creek 4, 4 - Jones Creek 3, 5 - No Man’s Friend 1 and 6 – No Man’s Friend 2 

(mud).   

The spectral analysis within ENVI for decomposing endmembers from imagery 

can be performed using the Spectral Mapping Wizard.  The wizard is a set of independent 

functions that can be used though the wizard or each function by itself.  For this research 
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each of the functions for the spectral analysis was implemented individually.  In this way, 

functions were re-run until results were fine tuned and a greater understanding of the data 

was achieved.  Spectral analysis on each of the image subsets was done once to derive 

oyster endmembers from the imagery but was mapped using the MTMF function twice.  

Once with image derived endmembers and the second time using in situ derived spectral 

endmembers.  All field collected spectral signatures were first convolved to match the 

wavelength scale of each of the remotely sensed images and minimum noise 

transformations were performed for inclusion in the MTMF process.  

4.4 Minimum Noise Transformation 

4.4.1 AISA 0.5 meter; BOB4 Sample Site 

Spectral analysis was done using the photogrammetric and remote sensing 

software, The Environment for Visualizing Images (ENVI) version 3.5, SP1 and 4.1, by 

Research Systems Incorporated, of Boulder, CO.  

Before analysis of the AISA or HyMAP imagery could be initiated, a mask of the 

study area was constructed.  This study site was selected due to its large patch reef with a 

variety of shellfish strata types present both on the reef and on patch reefs surrounding 

the study site.  The mask in effect negates pixels of water and vegetation for the 

Minimum Noise Transformation and subsequent analysis.  Using the 2-dimensional 

feature space viewer using ENVI, clusters of water and vegetation were classified and 

used in construction of the mask.  Pixels not classified using the above method were 

hand-selected and classed.   
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a. MNF  1.     b. MNF 2. 
 
 
 
 
 
 
 
 
 
 c. MNF 3.     d. MNF 4. 
 

.  
 
 
 
 
 
 
  

e. MNF 5.     f. MNF 6. 
 
 
 
 
 

 
 
  

 
 

g. NMF 7. 
 
 
 
 
 
 
 
 
 
Figure 4.4 - Minimum Noise Transformation Fractions for AISA 0.5 meter BOB4 Site 
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A visual and statistical inspection of the AISA MNF rotation in Figure 4.4 allows 

the analyst to identify the eigen image(s) that convey the most useful information and 

identify the eigen image(s) that best represents the materials of interest.  Minimum noise 

fractions 1 through 5 show the best image cohesion but from a priori field experience of 

the study site fractions 2 and 4 show the best fractions for shellfish.  An examination of 

figure 4.5 shows a graph of the eigen values shows that the plot descends rapidly from 

eigen image 1 to 2 but is mostly level at eigen image 6, confirming the earlier visual 

inspection that eigen images 1 through 6 show the best image cohesion.  Table 4.2 below 

shows the contributions of each band to the eigen vectors (principal components).  The 

greatest contribution to eigen vector 1 (principal component #1) are bands 1, 2, and 5. 

Bands 7, 1, and 6 respectively contribute the most to eigen vector 2 (although band 7 has 

a much higher weighting than any other weights and the eigen image shows the bright 

shellfish areas within BOB4).  Bands 4, 2, and 3 respectively contribute the most to eigen 

vector 3 and bands 5, 6, and 4. Examination of the contributions of each of the bands to 

the eigen vector images, one sees the yellow highlights the highest contribution for each 

eigen vector, bands 6 (713.82 nm) sums to 88.52 with band 1 (498.98 nm) sums to 87.59 

and we can surmise that these two bands contribute the most to the discrimination of 

shellfish. 
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Figure 4.5 - LargerSubset_05m_MNF8 Eigenvalues Plot 

Table 4.2 - AISA Principal Component Band Weightings 

 
The eigen values was used in conjunction with the eigen-images to visually verify 

and select those principal component bands that exhibit the greatest degree of spatial 

cohesion. Eigen-images 6 and 7 are dominated by noise and constitute the smallest 

contribution to the scene variance. Table 4.3 shows the percent contribution of variance 

Contributions to Principal Components for: LargerSubset_05m_NMF8

PC #  Band 1-498.980  Band 2-549.540  Band 3-584.300 Band 4-669.240  Band 5-700.140  Band 6-713.820  Band 7-819.840
PC 1 39.461132 30.967971 3.7874552 1.6658845 19.701317 0.10766289 4.3085771
PC 2 13.753507 0.1117656 3.5168846 5.4145362 0.78053759 7.0317692 69.391
PC 3 1.2678803 21.83554 20.607179 39.846817 7.1041205 0.4042573 8.9342059
PC 4 1.5524154 13.996682 0.012908533 18.530118 33.042241 32.728787 0.13684773
PC 5 14.624366 1.3457968 56.981885 11.534314 0.15615138 10.970003 4.3874836
PC 6 9.5766675 2.0882763 12.99604 7.7534701 39.205715 16.608796 11.771036
PC 7 19.764032 29.653968 2.0976477 15.25486 0.009917925 32.148725 1.0708496
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explained by each band. There is a total of 98.24% of the variance explained by the seven 

eigen-images and 94.24% explained by the usable bands 1-5. 

Table 4.3 – Percent Contribution of Bands 

 
4.4.2 HyMAP 4 X 4 meter; BOB4 Sample Site 

It was found that the best subset of the 126-band HyMAP imagery were bands 2-

61.  This is contrast to the use of bands 2-44 that were used for the in situ mapping.  This 

is the difference between the optimal use of bands and limitations imposed for the use of 

the GER field data.  For the sake of comparison, HyMAP bands 2-44 were spectrally 

analyzed so as to compare the final mapping accuracies with the in situ derived 

endmembers.  Bands from 61 to 126 were found to contribute very little to the weights of 

the Minimum Noise Fractions when bands 41 to 126 or bands 2 to126 are subjected to the 

Minimum Noise Transformation.  This report shows the results from using bands 2-61 

and 2-44 in using image derived endmembers and in situ spectral library endmembers.  

Band one was not included due to the preponderance of noise within the band.  Since the 

interest is in shellfish and mud, a mask was constructed and applied in the same manner 

as was done for the AISA image to effectively negate water, vegetation and areas outside 

of the image that would otherwise be considered in the MNF transformation.  As 

described above, the inclusion of water and vegetation in the MNF transformation skews 

the eigenimages to favor the water and vegetation effectively relegating mud and 

Band Eigenvalue Percent

Band 1 54.403262 50.80967884
Band 2 23.713668 78.55858451
Band 3 13.898252 87.43348369
Band 4 8.706524 92.12773837
Band 5 5.543738 94.98746504
Band 6 2.395308 97.83421131
Band 7 1.936741 98.24883824
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shellfish to the lowest end of the eigenvalues.  Any of the subtle variances within mud 

and shellfish are lost within the larger variances of the vegetation and water.  The MNF 

transformation from the use of the in situ endmembers is the same mask that was applied 

to the image endmember analysis. 

As with the AISA region of interest, for the HyMAP images a mask was 

constructed of the water and vegetation using the 2-dimensional feature space viewer.  

The masked subset was the same mask applied to ROI 1 Bands2_44 and ROI 2 

Bands2_61. 

All bands from 2-61 were utilized in conjunction with the mask band that was 

produced from the use of the 2-dimensional feature space viewer.  The result of the 

transformation was 60 eigenimages and descriptive statistics that included the eigenvalue 

of each of the transformed bands.  Figures 4.6 and 4.7 show the eigenvalues versus 

eigenvectors graphs with the steep descent of the curve followed by a longer flatter curve 

graph of both HyMAP spectral and spatial subsets. 
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Figure 4.6 – Eigen Values of ACORN_SPECSUB_2_61 

Figure 4.7 - Eigenvalues of ACORN_SPECSUB2_44 

In both figures the curve starts to flatten out around the 6th eigenvector and is flat 

by the 10th eigenvector.  When significance between eigenvectors diminishes, very little 

information is contributed to the explained variance.  This ability to reduce the 

dimensionality of a hyperspectral image is a key component in the analysis of 

hyperspectral imagery.  Since many of the bands within a hyperspectral image have a 
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high degree of colinearity, the ability to eliminate redundant information or information 

that is of no use, is an important step.  The next step was to visually and statistically 

examine the eigenimages to select the eigenimages that are the most discriminating of 

shellfish and eliminate eigenimages that were noise dominated.  Tables 4.4 and 4.5 below 

show the top three bands for the first ten eigenvectors that contributed the most to each 

eigenvector.  This is interesting as it gives clues as to which portion of the 

electromagnetic spectrum is best suited for discerning shellfish.  By knowing which eigen 

image shows the brightest pixels for shellfish we can know which bands were weighted 

the highest for a particular eigen image. 
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Table 4.4 - ACORN_SPECSUB2_61_MNF1 Weights 

 
Table 4.5 Acorn_Specsub2_44_MNF1 Weights 

 
Viewing the individual Minimum Noise Fraction images below for both HyMAP 

subsets in figures 4.8 and 4.9, around fraction nine or ten the image becomes grainy and 

there is no pattern to the light / dark pixels that would correspond to either mud or 

shellfish.  Taking all the pertinent information together, MNF 1 through 10 minimum 

noise fractions were the most valid eigen images for further refining of the pixels via the 

pixel purity index.  If the better MNF eigenimages for analysis are 1 through 10 how 

Band Contributions and Weightings

Principal Component Analysis for Acorn_Specsub2_44

PC Number BANDS WEIGHTS
PC 1 Band 6 Band 8 Band 2 24.544642 21.270713 10.625006
PC 2 Band 7 Band 6 Band 4 22.94082 22.624914 11.595337
PC 3 Band 5 Band 9 Band 4 48.837544 12.746763 8.2575101
PC 4 Band 8 Band 10 Band 11 18.174939 12.163735 7.4630977
PC 5 Band 21 Band 20 Band 10 21.841274 14.430288 12.215388
PC 6 Band 9 Band 13 Band 20 17.400769 12.358863 9.2249532
PC 7 Band 13 Band 8 Band 12 24.131268 9.3414639 9.0000087
PC 8 Band 10 Band 17 Band 18 12.042941 12.041463 11.333438
PC 9 Band 9 Band 13 Band 11 15.258824 11.084697 10.771905
PC 10 Band 15 Band 12 Band 11 21.328123 14.473929 8.5607029

Band Contributions and Weightings:

Principal Component Analysis for Acorn_SpecSub2_61
PC Number BANDS WEIGHTS
PC 1 Band 6 Band 2 Band 3 11.987379 9.2760573 8.5539724
PC 2 Band 8 Band 6 Band 16 29.277465 18.890562 7.220803
PC 3 Band 5 Band 4 Band 12 41.006034 7.734877 6.4461721
PC 4 Band 15 Band 13 Band 19 15.454924 14.655724 9.3147558
PC 5 Band 2 Band 15 Band 26 10.631192 10.335425 8.0594018
PC 6 Band 16 Band 17 Band 35 16.724908 4.6216271 8.6137405
PC 7 Band 28 Band 18 Band 16 8.4118245 7.4878084 6.9099657
PC 8 Band 39 Band 31 Band 20 11.9482 11.251051 9.9917252
PC 9 Band 47 Band 22 Band 16 7.5668694 6.7345066 6.6067521
PC 10 Band 16 Band 50 Band 31 15.394009 8.2520497 7.0312418
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much of the total variance is accounted for when utilizing just 10 out of a possible 59 

eigen images?  Tables 4.6 and 4.7 below show the cumulative variance that is associated 

with each successive eigen image.  For bands 2-61 in table 4.6, within the first 10 eigen 

images there is a total of only 46% and 56% for the bands 2-44 subset of the total 

variance in the image explained in the first 10 eigen images.  This was an unexpectedly 

low value but there could be a number of causes for this low value.  Most prominent is 

the large number of bands used as input and there is not the presence of any single or 

group of bands that carry a disproportionate amount of the variance in the scene.  Hence 

the variance maybe spread out some what evenly over all the bands.  Examination of the 

table of weights in tables 4.4 and 4.5 by eigen vector reveals that bands.  Examining the 

eigen vector images in conjunction with the weightings tables gives insight into which 

bands may have the greatest influence in discerning shellfish from mud.  From these 

examinations, optimal bands for identifying mud and oysters are the visible bands (blue, 

green and red).  Although the principal component that has the highest weight is in 

principal component 3 and lists band five (0.4972 µm) as having the highest weighting, 

with band eight (0.5439 µm) in principal component 2 having the second highest 

weighting.  Band five is in the blue region of the electromagnetic spectrum and band 

eight is in the green region although the two bands are relatively close the lower limit of 

band five is around the maximum of clear water while band eight is in the lower area for 

the detection of chlorophyll.  In this case the presence of diatoms maybe influencing the 

reflectance. 



 90

Table 4.6 – Cumulative Percent ACORN_SpecSub2_61 

 
Table 4.7 – Cumulative Percent ACORN_SpecSub2_44 

 

MNF Band Eigenvalue Cumulative Percent 
     Band 1 113.715216 19.68291099
     Band 2 38.496547 26.34625944
     Band 3 25.867514 30.82365476
     Band 4 20.076597 34.29870309
     Band 5 16.016936 37.07106669
     Band 6 14.004451 39.49509025
     Band 7 12.275391 41.61983166
     Band 8 10.877002 43.5025266
     Band 9 9.760726 45.19200588
    Band 10 9.31478 46.80429659

Band Eigen Value Cumulative Percent
1 110.300974 24.26741907
2 37.464643 32.51004975
3 23.821269 37.75098912
4 17.034562 41.49877882
5 14.877893 44.77207779
6 12.584281 47.54075707
7 10.536101 49.85881437
8 9.389293 51.92456139
9 9.297237 53.97005508
10 9.041847 55.95936018
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Figure 4.8 - MNF for ACORN_SPECSUB2_61 BOB4 Sample Site 

HyMAP Specsub2_61 MNF 1 HyMAP Specsub2_61 MNF 2 

HyMAP Specsub2_61 MNF 3 HyMAP Specsub2_61 MNF 4 

HyMAP Specsub2_61 MNF 5 HyMAP Specsub2_61 MNF 6 
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Figure 4.8 Continued  - MNF for ACORN_SPECSUB2_61 BOB4 

 

 

 

 

 

 

HyMAP Specsub2_61 MNF 7 HyMAP Specsub2_61 MNF 8 

HyMAP Specsub2_61 MNF 9 HyMAP Specsub2_61 MNF 10 
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Figure 4.9 - MNF for ACORN_SPECSUB2_44 BOB4 Sample Site 

HyMAP Specsub2_44 MNF 1 HyMAP Specsub2_44 MNF 2

HyMAP Specsub2_44 MNF 3 HyMAP Specsub2_44 MNF 4

HyMAP Specsub2_44 MNF 5 HyMAP Specsub2_44 MNF 6
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Figure 4.9 Continued - MNF for ACORN_SPECSUB2_44 

 

 

 

 

 

 

 

 

HyMAP Specsub2_44 MNF HyMAP Specsub2_44 MNF 

HyMAP Specsub2_44 MNF HyMAP Specsub2_44 MNF 
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4.5 Pixel Purity Index 

4.5.1 AISA Pixel Purity Index (PPI) 

The parameters used for the Pixel Purity Index was a threshold factor of 2 and 

10,000 iterations.  The curve describing the number of spectrally pure pixels was 

relatively flat after the initial round after finding 1853 pixels that were designated as 

spectrally pure.  Figure 4.10 shows the image produced from the process over-laid on the 

AISA image and density sliced by value for better viewing. 

 

 
Density Color 

Values 
 

Value Color 
1 – 162 Red 

163 - 326 Green 
327 – 490 Blue 
491 – 654 Yellow 
655 – 818 Cyan 
819 – 982 Magenta 
983 – 1146 Maroon 
1147 - 1310 Sea Green 

Figure 4.10 - MNF Iteration 9 Pixel Purity Index 
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From the pixels that were marked as spectrally pure, these were then processed in 

the n-Dimensional Visualizer within ENVI.  The n-Dimensional Visualizer assigns the 

pixels to classes and displays the results of the colored classes visually in a multiple 

dimensional viewer.  The user can manipulate these classes in various dimensional axes 

as well as rotate and turn to inspect the data cloud.  The user has the option of including 

additional endmembers within the class or endmember bundle, delete classes or add more 

classes.  The user also has the option of exporting a class of pixels to the Region of 

Interest (ROI) viewer to view the pixels within the image.  This is helpful in deciding if a 

certain class of endmembers correlates with a priori knowledge the user may posses of 

the image.  This inspection of the data is the most subjective portion of the analysis and is 

discussed in greater detail in the Discussion section.  Figure 4.11 illustrates the two 

classes of endmembers that were collected using this technique.  There were 20 

endmembers that were collected to represent the shellfish. This was to ensure enough 

spectral variability to adequately map most or all of the shellfish found within the study 

area.  Only six endmembers were selected to represent the mud class.  Fewer mud 

endmembers were found but this may reflect the narrower spectral variability of mud 

within the scene.  Figure 4.11 illustrates graphically the two classes with the Pixel Purity 

Index image overlaid on the AISA image for two sample sites within the study area.  

There were 6 pixels representing the mud endmember and 20 pixels representing the 

shellfish endmember.  A final proof of separability between the two classes is the use of a 

statistical test named the Jeffries-Matusita Transformed Divergence test.  The two classes 

are termed separate if the score is above 1.8, a score below this value indicates they 
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should be merged into a single class.  The results of this test yielded a score of 1.895, 

which indicates these two classes (shellfish and mud) are distinct and separable. 

 
Figure 4.11 – Portion of ROI for Image Derived Endmembers - AISA 

 
4.5.2 HyMAP Pixel Purity Index (PPI) 

  As stated above, the purpose of the Pixel Purity Index (PPI) is to transpose the 

pixels from the MNFT image into multiple dimensions and rotate the data cloud, then 

mark the number of times certain pixels on the extreme edge of the data cloud are 

captured.  This technique was derived from the convex hull geometry concept 

(Boardman, 1993).  The purpose is to compile a list of pixels that are the most extreme 

and thus the most spectrally pure.  These pixels were then utilized to map the image for a 

specific earth material or endmember.  There was a large degree of subjectivity that 

depended upon the analysts experience and a priori field conditions that were injected 

into the analysis by the analyst in the sense that many endmembers have the ability to be 

selected with varying degrees of pureness.  It is up to the analyst to determine which ones 

were of most utility and represent the material of interest.  Additionally, one spectra or 

endmember may not adequately reflect the full range of spectral variability found in situ.  
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To counter this endmember “bundles” with multiple endmembers have been produced in 

an attempt to encompass the spectral variability.  This approach has limitations since 

there can only be n -1 number of endmembers compared to the number of input 

eigenimages used in the mapping (Bateson et al.1998). 

In the course of this research there were dozens of permutations of the mapped 

imagery and parameters computed for both 2-44 and 2-61 band subsets.  For purposes of 

this report only the results obtained from the most successful run of the endmember 

selection and mapping are discussed from the band 2-61spectral subset.  The first ten 

eigenvectors were used with five thousand iterations with a threshold factor of 1.0 

resulted in finding 999 spectrally pure endmembers within the image subset.  In Figure 

4.12, the Pixel Purity results show the full range of the pixel values in a density slice of 

the bands 2-61 spectral subset.  As a matter of reference, pixels with a higher score are 

considered more “spectrally pure” than pixels with a lower score (the number represents 

the number of times the pixel is marked as extreme).  Only one pixel had a score greater 

than 754 (the most spectrally pure) and two pixels were in the 646 - 753 range.  From a 

priori knowledge, both of these sets were located within the shellfish reef areas.  These 

sets were utilized as input into the MTMF mapping method and then subsequently 

refined to obtain more accurate shellfish mapping. 
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Figure 4.12 – PPI Image Showing Full Range of Pixel Values Band Subset 2-61 

Viewing the results, most of the pixels were low scoring and thus do not represent 

spectrally pure pixels.  To isolate the higher scoring pixels, the pixels were held to a 

threshold value (441 - 816) to isolate the higher values.  The higher scoring pixels are 

shown in figure 4.13 exclusively with the elimination of lower scoring and less pure 

pixels for the spectral subset bands 2 – 61 with the values labeled.  After further 

refinement of the shellfish and mud endmembers by successive iterations of mapping, 

figure 4.14 shows the endmember results that were used for the final MTMF mapping.  

The endmembers shown in figure 4.14 also happen to be located within the BOB4 sample 

site within an area that contains few live oysters and washed shells. 

Value Color 
1 – 106 Red 

107 - 214 Green 
215 – 322 Blue 
323 – 430 Yellow 
431 – 537 Cyan 
538 – 645 Magenta 
646 – 753 Maroon 
754 - 861 Sea Green 
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Figure 4.13 - Pixel Purity Index Showing Values From 441-861 

 
 

Figure 4.14 - Shellfish and Mud Endmembers HyMAP Bands 2-61 Shellfish (Green) and 
Mud (Yellow) Extracted Endmembers 

 
Figure 4.14 shows all the endmembers selected from the field sampling site 

BOB4 which had a higher spectral reflectance than the surrounding mud patch reef.  

Sea Green 754 - 861 

Cyan 431 - 537 
Red 646 - 753 

Magenta 538 - 645 
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There were 23 green pixel endmembers which represented shellfish and 25 yellow pixel 

endmembers that represented mud.   

 

4.6 MTMF Using Image Derived Endmembers 

4.6.1 AISA Mixture Tuned Matched Filtering 

A MTMF Score and Infeasibility Score (two images for each endmember bundle) 

was calculated using the endmembers from the BOB4 study site as input into the MTMF.  

Results of several MTMF runs are shown above in Figure 4.16.  This figure shows the 

pixels mapped as shellfish with values linearly stretched between zero (the background 

pixels) to one.  Displayed in figure 4.15 is the 2-dimensional scatter-plot of the MTMF 

Score (x-axis) and Infeasibility Score (y-axis) showing most of the pixel values residing 

between zero and one with a relatively low score on the infeasibility axis. 

Figure 4.15 – MTMF Results for Shellfish AISA Imagery BOB4 
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Figure 4.16 – MTMF Results for Shellfish AISA Imagery BOB4 

Interactive stretching uses set minimum and maximum values (0.0 to 1.015) and 

“stretches" those values over the whole range of values that can be displayed.  The results 

obtained for mud using the MTMF process and stretching the pixel values from zero to 

one are shown in figure 4.18.  This image represents mud features, and has values from -

0.014 to 0.968 stretched to isolate and map the mud pixels.  The scatter-plot (figure 4.17) 
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shows the majority of pixels with the lowest infeasibility values centered from zero to 

one, thus illustrating a successful endmember mapping process. 

Figure 4.17 - MTMF Infeasibility Score for Mud Endmember AISA Image BOB4 
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Figure 4.18 – MTMF Infeasibility Score Mud Endmember AISA BOB4 

4.6.2 HyMAP ACORN_SpecSub2_61 - Initial Mapping Round 

The first ten Eigen images from the Minimum Noise Transformed file 

ACORN_SpecSub2_61_NMF1 were used as input to map the shellfish and mud 

endmember bundles.  Endmember spectra used for input were obtained from the Pixel 

Purity index rather from the n-Dimensional Visualizer.  Since familiarity with the area 

allowed a priori knowledge of the study site, specific endmembers are known to be 

shellfish or mud.  The endmembers are designated for analysis by simply dragging-and-
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dropping the endmember into the endmember collection dialog box.  These endmembers 

were collected from an image that was already rotated in MNF space, so there was no 

need to convert the endmembers into MNF rotated endmembers. 

Each endmember that was used as input produced two output images: 1) MTMF 

Score image showing the mapped pixels with their DN designating the probability of the 

pixel matching the reference endmember, 2) an Improbability Score shows the degree of 

probability of a pixel being not correctly identified.  Figure 4.19 and 4.20 show the 

MTMF Score for shellfish and mud overlaid on the HyMAP subset image with values 

stretched between 0-1 with a color density slice.  Interestingly, mud is found in the same 

locations as shellfish although pixels classed as mud indicated a lower probability of 

correctness but pixels classed as shellfish indicated a higher probability of correctness. 

Figure 4.19 - MTMF Oyster Result with HyMAP Bands 2-61 Image 

 

Value Color
0 - 0.1199 Blue

0.1199 - 0.3497 Yellow
0.3947 - 0.5795 Cyan
0.5795 - 0.8094 Magenta
0.8094 - 1.032 Maroon
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Figure 4.20 - MTMF Mud Result with HyMAP Bands 2-61 Image 

Mud was also found to have a greater areal extent than shellfish.  From a priori 

field work, there are areas known to contain shellfish but were not classified as shellfish.  

Using the 2-dimensional scatter-plot of the MTMF Score versus the Infeasibility Scores, 

we can select endmembers with a high MTMF score and low Infeasibility Score.  The 2-

dimensional scatter-plot in figure 4.21 shows the distribution of endmembers with the 

MTMF scores along the x-axis and the infeasibility scores plotted along the y-axis with 

selected endmembers.  Selection of endmembers that have a low infeasibility and high 

MTMF score are shown in the figure. 

 

 

Value Color
0 - 0.1593 Blue

0.1593 - 0.3988 Yellow
0.3988 - 0.6383 Cyan
0.6383 - 0.8778 Magenta

0.8778 - 1.00 Maroon
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Figure 4.21 – Scatter-Plot of MTMF Scores vs. Infeasibility 

Selected Endmembers  
Low Infeasibility and High 

MTMF Score 
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Figure 4.22 – Location of Library Spectra of Shellfish and Mud from Bands 2-61 

Collection of these endmembers was accomplished by exporting the endmembers 

then saving as library spectra.  After they have been exported they are viewable within 

the HyMAP image (figure 4.22) showing mud (yellow) and shellfish (green) endmember 

library spectra.  These endmembers were used for input for the next round of MTMF 

mapping.  From the first round of mapping the endmember values of the mapped 

shellfish pixels ranged from -0.55697 to 1.2690.   
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4.6.2.1 HyMAP Second Round MTMF 

An item worth noting in figure 4.23 showing locations of pixels classified as 

shellfish, the area where the library spectra were located also have the most pixels classed 

as shellfish with fewer pixels classified as shellfish further away from the library spectra.  

Second round mapping for shellfish and mud (figures 4.24.and 4.25) produced results 

that showed an increase in the range of pixel probability values.  

Figure 4.23 – MTMF Second Round Mapping of Shellfish 

 



 110

Figure 4.24 – MTMF 2nd Round Mapping of Shellfish with HyMAP Overlay 

Figure 4.25 – MTMF Second Round Mapping of Mud 

Mud Legend 
 
0.0000 to 0.2097 Yellow 

0.2097 to 0.4732 Magenta 

0.4732 to 0.7366 Green 

0.7366 to 1.0000 Red 

Bright Shell Legend 
 
0.0634 to 0.3398 Yellow 

0.3398 to 0.6193 Magenta 

0.6193 to 0.8927 Green 

0.8927 to 1.0030 Red 
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4.6.2.2 HyMAP Bands 2-44 Mixture Tuned Matched Filtering 

Two bundles of endmembers representing shellfish and mud were derived from 

the HyMAP imagery bands 2-61 spectral subset and the same set of endmembers were 

utilized for the initial round of mapping using the MNF images derived from the bands 2-

44 HyMAP spectral subset.  These same endmembers were used to measure the change 

in results from using the same set of endmembers for both spectral subsets.  Initial 

endmember selection was with the use of ENVI’s N-Dimensional Visualizer utilizing a 

refining process using the 2-dimensional plot to select endmembers with the lowest 

infeasibility and highest score.  Two sets of endmembers were the result after two 

iterations of refinement and are referred to as Bright Shell and Mixed Shell endmembers 

with each having 5 and 6 endmember bundles respectively.  The endmember bundles are 

so named because the five Bright Shell endmembers are aggregated closely together on  

top of the BOB 4 study sight in an area that has oysters with a higher reflectance due to 

washed shells.  The Mixed Shellfish are distributed throughout the study within locations 

that show areas of higher density live oysters. 

The first endmember bundle, Bright Shell had the best accuracy within the 

general location of the endmembers, the top of BOB 4 patch reef.  Figure 4.26 shows the 

results from the MTMF mapping using the Bright Shell endmember bundle. 
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Figure 4.26 - MTMF Results for Bright Shell Bundle with HyMAP Bands 2-44 

The image with the HyMAP over lay shows the best detail of BOB 4 study site 

and also the location of the best shellfish mapping accuracy.  A smaller location just 

north of the BOB 4 study site also shows an area with washed shells.  The results from 

the Mixed Shell endmember bundle is displayed in figure 4.27.  The Mixed Shell 

endmember bundle indicates results with a distributed shellfish classification.  A visual 

inspection shows the shellfish to be patchy and fragmented. 

HyMAP Bands 2 – 44

Image Derived

Bright Shells Endmember
Mixture Tuned Matched 

Filter Result

Results with Dynamic 
Overlay of HyMAP Image

&

No Overlay

Washed shell 



 113

Figure 4.27 - MTMF Results for Mixed Shell Bundle with HyMAP Bands 2-44 

4.7 MTMF from In situ Derived Endmembers 

4.7.1 Mapping In situ Endmembers Using AISA Imagery 

The mapping of the AISA remotely sensed imagery, as described in the 

Methodology section, started with masking then executing an MNFT to reduce the 

dimensionality of the data and eliminate any band-to-band correlations.  This aspect of the 

methodology was the same for all datasets analyzed.  Before the MTMF is executed, the 

user must decide on which endmember to use as inputs.  If the user chooses to utilize in 

situ endmembers then the implementation of the Pixel Purity Index is skipped and the in 

situ endmembers are convolved to match the specific bandwidths of the imagery.  A MNF 

transformation is then implemented on the in situ endmembers prior to inclusion into the 

MTMF algorithm. 

HyMAP Bands 2 – 44 
Image Derived

Mixed Shell Endmember
Mixture Tuned Matched 

Filter Result

Results with Dynamic 
Overlay of HyMAP Image

&

No Overlay
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4.7.1.1 MNF Rotation of In situ Endmembers 

In order for in situ derived spectral endmembers to be utilized for spectral 

analysis, they must first be convolved to match the specific bandwidths of the imagery 

that was to be mapped.  Because the remotely sensed images were transformed using the 

MNF rotation algorithm, the spectral signatures were also transformed.  A graph of the 

spectral signatures from the image-derived endmembers taken from the BOB4 sample 

site alongside the aggregated in situ spectral signatures collected from the same sample 

site that have not been convolved to match the AISA band-width (figure 4.28).  Visual 

inspection of this figure shows for the most part, the endmembers and in situ curves line 

up spectrally with little deviation except in magnitude of reflectance.  The red/infrared 

shift for both the shorter AISA derived endmembers and the in situ spectral signatures all 

coincide.  The AISA derived endmembers do not match the spectral range of the in situ 

endmembers due to the in situ spectral endmembers not having been convolved to match 

the AISA spectral range and bandwidth.  Figure 4.29 shows after the in situ spectral 

endmembers have been convolved to match the AISA spectral bandwidth and range.  The 

spectral signatures in red are in situ endmembers that have been aggregated and 

convolved to match the AISA imagery bandwidth and spectral range.  The black spectral 

signatures are the AISA spectral endmembers that were derived from imagery at the BOB 

4 sample site. 
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Figure 4.28 - Spectral Curves of In Situ and AISA Imagery Shellfish 

The in situ endmembers align very closely with the image endmembers, the 

exception being that it appears the image-derived endmembers (black) have a lower 

reflectance than the in situ endmembers.  This may be the result of image and in situ 

endmembers acquired on different dates or differences in radiometric corrections.  This 

underscores a concern that is expressed in the literature on the accuracy of using in situ 

derived versus image-derived endmembers for mapping.  The literature supports this 

contention that better results are obtained using imaged derived endmembers for the 

reasons stated above (Elmore, et al. 2000). 
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Figure 4.29 – Convolved In Situ Endmembers & AISA Image Endmembers 

4.7.1.2 AISA Mixture Tuned Matched Filtering 

Using the convolved in situ endmembers and the AISA image, the endmembers 

were mapped in two parts.  The first part used the in situ endmembers aggregated from 

BOB 1 through 3, (aggregated clusters BOB A through C).  The second part utilized in 

situ endmembers from BOB 4, (aggregated clusters D through G).  The rationale for 

mapping the in situ endmembers in two parts is due to the n-1 constraint.  Additionally, 

the first set of endmembers were not native to the study area of interest but the sample 

sites BOB 1-3 are the closest to BOB 4 than any other sample site.  Endmembers needed 

to be tested to see if those that were derived from the study site had the same level of 

mapping accuracy as endmembers derived from the area of interest.  Figures 4.30 - 4.32 

shows the last two revisions of mapping using BOB A through C in situ endmembers. 
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Figure 4.30 - BOB A In Situ MTMF Mapping Result 

Selection of Endmembers 

BOB A MTMF Score

Infeasibility (y) vs. MTMF Score 
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Figure 4.31 - BOB B In Situ MTMF Mapping Results & Scatter-Plot 

Selection of 
Endmembers 

BOB B MTMF Score

Infeasibility (y) vs. MTMF Score (x)
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Figure 4.32 - BOB C In Situ MTMF Mapping Results & Scatter-Plot 

Selection of 
Endmembers 

BOB C MTMF Score

Infeasibility (y) vs. MTMF Score (x)
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The MTMF results were very similar between BOB A, BOB B, and BOB C in 

situ endmembers.  Endmembers that were collected using the scatter-plots were unique as 

measured by the Jeffries-Matusita Transformed Divergence test (scores greater than 1.8).  

When in situ endmembers BOB D through F were utilized for mapping the AISA 

imagery and the subsequent endmember revisions were made using the 2-dimensional 

scatter-plots, the revised endmembers were not unique and were combined into a single 

endmember bundle.  Figure 4.33 shows the result from mapping these single class 

endmembers. 

Figure 4.33 - BOB D Through F (combined) Revision 1 - Endmembers with AISA 

Of interest to note that when the revised endmembers are shown on the MTMF 

score, their location is geographically different than where they were sampled in the field, 

but they are located in an area that contains dead brightly reflective shells, few live 

Most of revised 
endmembers 
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shellfish and a similar type of strata as found on top of BOB4 (BOB D through G was 

sampled in situ from BOB 4). 

4.7.1.3 In situ Spectral Mapping Using HyMAP Imagery 

Mapping the 4.0 x 4.0 meter HyMAP imagery with in situ endmembers follows 

the same analysis flow schema as described in Figure 3.8 in the Methodology section.  

The spectral image analysis was performed using a subset of HyMAP bands 2 - 44.  A 

limitation of the in situ spectral data is the GER 1500 spectroradiometer calibration is 

from 350 to 1050 nm, in contrast the HyMAP imagery spectral range is 439 nm to 2482 

nm.  To utilize the in situ endmembers, the HyMAP imagery had to be subset to the same 

relative spectral range of the in situ data.  Consequently, the HyMAP subset that was 

utilized for the purpose of mapping the in situ endmembers were bands 2 through 44 

(452.9 – 1078.8 nm).  The in situ endmember sets were derived from BOB A through 

Bob G sample sites (see Appendix 7.3 – Shellfish Secondary Aggregation for specific 

sample points used) which were convolved to match the HyMAP band widths and 

spectral range.  Figure 4.34 graph shows the convolved in situ endmembers with HyMAP 

endmembers of shellfish from the BOB 4 sample site. 
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Figure 4.34 - Comparison Between HyMAP and In Situ Endmembers 

The overall alignment between the HyMAP and in situ endmembers is very good 

but it is also interesting to see there is a greater slope increase in the red to infrared 

between the in situ and image endmembers.  At approximately 700 nm, the in situ 

endmembers exhibit a greater overall reflectance than the in situ endmembers. 
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4.7.1.4 HyMAP In Situ Mixture Tuned Matched Filter (MTMF) 

The initial runs used the convolved in situ spectral endmembers from BOB A 

through G and the endmembers from a shellfish patch reef located within the subset 

image.  The success of using in situ endmembers for identifying patch reef was marginal.  

This set contained seven shellfish endmembers from the aggregated in situ endmembers 

with all but one resulting in the data range being extremely narrow (the data being 

centered on zero, representing the suppressed background data).  The result of mapping 

BOB E in situ endmembers is shown in figure 4.35, which is an aggregate of mostly 

deceased shellfish that have higher over-all brightness. 

Subsequent mapping efforts and refinement of the BOB G endmembers was 

accomplished using the 2-dimensional scatter-plot.  After three successive rounds of 

mapping and refining endmembers, figure 4.36 shows the result displayed with density 

slice over-lay to identify pixels that are highest scoring for shellfish. 
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Figure 4.35 - MTMF Result for BOB E In situ Endmembers 
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Figure 4.36 - MTMF 5 BOB “G” In Situ Endmembers 
 

These runs were more promising, resulting in wide data range with values from -

1.22 to 1.98.  The image in Figure 4.36 was stretched between 0.013 and 0.995 to show 

pixels that have the highest probability of being shellfish.  Of interest is BOB G which is 

primarily composed of shellfish from BOB 4.  This sample site contains live vertical 

clustered shellfish with not as many dead washed shells that exhibit higher spectral 

reflectance.  Since the in situ endmembers originated from BOB 4 (larger patch reef), it 
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was expected these features would map with a higher probability.  This assumption 

proved correct.  In addition, there were additional pixels mapped that showed higher 

probabilities of being correctly mapped as shellfish on the left side of the image and to 

the north.  Pixels colored cyan indicate a lower probability of being correctly mapped 

than the sea green and magenta pixels. 
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4.8 Accuracy Assessment  

The following show graphically with comment the creation of the “apparent 

truth” GeoVantage oyster map that was created to assess the “found” mapped AISA and 

HyMAP oyster maps.  Only the resulting images of “found” oysters, correctly mapped, 

incorrectly mapped, omitted oysters, and a composite image showing correct, incorrect, 

and omitted are shown from each assessment.   

The first treatment is the creation of an “apparent truth” oyster map that shows the 

locations of identified polygons of shellfish clusters that were found within the study 

area.  The length of an individual shellfish ranges in size from 3 inches to 8 inches, but 

the smallest individual grouping of shellfish is determined by the spatial extent of the 

GeoVantage imagery used for the reference image.  The spatial extent of the GeoVantage 

imagery and thus the minimum mapping unit (MMU) is 0.25 x 0.25 meter.  The 

acquisition date and time of day of the imagery is unknown but was collected in 2005 

(pers. comm. Coen, 2005).  The imagery was collected as part of a statewide coastal 

survey in conjunction with the National Oceanic and Atmospheric Administration 

(NOAA) and the South Carolina Department of Natural Resources.  The term “apparent 

truth” is used to denote that although every effort was used to accurately verify the 

degree of truthfulness of the “apparent truth” map through the use of field notes and 

pictures, but there is no guarantee to the degree of absolute truth of the “apparent truth” 

map.  Additionally, there are some discrepancies between study area sizes between the 

HyMAP, AISA, and GeoVantage imagery.  The GeoVantage 0.25 X 0.25 meter spatial 

resolution imagery retained an extent of the study site that was as big as or bigger than 

either of the other sets of data.  Hence, only shellfish found within the AISA or HyMAP 
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data sets that were found contained within or partially contained within the GeoVantage 

“apparent truth” image were included in the accuracy assessment. 

4.8.1 Creation of the GeoVantage “Apparent Truth” Map 

The creation of the apparent truth oyster map was accomplished using a 

combination of several classification methods.  The first treatment was to use Visual 

Learning System’s Feature Analyst to classify the larger patch and fringing shellfish 

reefs.  The results obtained were satisfactory with the exception that after considerable 

amounts of time and various shape representations within Feature Analyst, smaller 

clusters of shellfish isolated on larger patch reefs and fringing reefs were missed.  With 

the aid of a priori field experience, field notes, and photographs, these areas were 

mapped by manual digitization techniques.  The ability to visually identify small isolated 

clusters of shellfish was in part due to the 0.25 x 0.25 meter spatial resolution of the 

GeoVantage imagery.  The use of visual classification and inspection was critical to the 

creation of the apparent truth oyster map.  The following figure 4.37 exemplifies the high 

spatial resolution nature of the GeoVantage imagery and the ability to identify various 

classes of shellfish with an inset of the apparent truth oyster map. 
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Figure 4.37 – Creation of GeoVantage “Apparent Truth” Map 
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4.8.2 HyMAP MTMF Assessment 

 4.8.2.1 HyMAP Spectral Subset Bands 2-61 

The first results obtain with the HyMAP image was with the spectral subset of 

bands 2-61 (452.9 – 1324.7 nm).  As previously stated, HyMAP was spectrally subset 

into two separate subsets so the image endmember analysis would approximate the 

spectral range that was used for the in situ derived spectral analysis.  The inclusion of 

bands 45-61 constituted the inclusion through the short-wave infrared region of the 

electromagnetic spectrum.  Earlier trials had indicated an increase in the detection of 

shellfish with the inclusion of the short-wave infrared bands.  A spectral subset of the 

HyMAP bands 2-44 was necessary so as to compare with the field derived endmembers 

analysis.  Figures 4.38a – 4.38c shows the results of the HyMAP bands 2-61 spectral 

subset accuracy assessment.  The “oysters mapped” inset image shows the extent of the 

oysters mapped using the MTMF method.  The correctly mapped oysters show those 

oysters from the oysters’ mapped images that are correctly mapped.  The remaining three 

inset images show oysters that were mapped but were incorrect, oysters that were not 

mapped but should have been mapped as oysters, and an image showing correctly 

mapped oysters, incorrectly mapped oysters, and omitted oysters are shown together in a 

single image. 
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Figure 4.38a – HyMAP Bands 2-61 Oyster Mapping Accuracy Assessment Results 
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Figure 4.38b – HyMAP Bands 2-61 Oyster Mapping Accuracy Assessment  
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Figure 4.38c – HyMAP Bands 2-61 Oyster Mapping Accuracy  Composite 



 134

 

Most notable for the HyMAP oyster maps is the larger extent of the raster 

converted polygons.  As noted above the 4 x 4 meter spatial extent of the HyMAP 

imagery has inflated the total area of the area that is considered to have shellfish.  The 

approach behind the analysis of using the 2-61 and 2-44 bands subset is to test if higher 

yields result from the addition of extra bands in the short-wave infrared region.  Although 

it may have yield a higher probability of oysters contained within a cell, these result may 

not be apparent due to the inflated areal extent from the HyMAP.  Put another way, the 

MTMF result tells only the probability of a cell having oysters but not the abundance or 

location of oysters within the polygon. 

 4.8.2.2 HyMAP Spectral Subset Bands 2-44 

The HyMAP bands 2-44 spectral subset used endmembers that were derived from 

the imagery but was also subset to the spectral range that was comparable to the field 

hand-held spectroradiometer.  Two endmembers were found from the MTMF analysis:  

Bright Shell from the top of the study site BOB 4; Mixed Shell composed of either F or 

F1 strata that show live scattered clusters of oysters. 

Figures 4.39a - 4.39c visually shows the accuracy results from the HyMAP bands 

2-44 image derived endmembers subset.  What is notable is the near complete 

classification of all patch reefs as oysters.  Very few portions of the patch reefs are not 

considered oysters. 



 135

 
Figure 4.39a – HyMAP Bands 2-44 Bright Shell Accuracy Assessment Results 
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Figure 4.39b – HyMAP Bands 2-44 Bright Shell Accuracy Assessment Results  
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Figure 4.39c –HyMAP Bands 2-44 Bright Shell Accuracy Assessment Composite 
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The following figures 4.40a – 4.40c shows the accuracy assessment results from 

the mixed shell endmember analysis derived from the HyMAP image. 

 
Figure 4.40a – HyMAP Bands 2-44 Mixed Shell Accuracy Assessment Results  
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Figure 4.40b – HyMAP Bands 2-44 Mixed Shell Accuracy Assessment Results  
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Figure 4.40c –HyMAP Bands 2-44 Mixed Shell Accuracy Assessment Composite
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Visually comparing the two HyMAP accuracy assessments visually, one notes 

there is not a lot of difference between either the bright shell or mixed endmember 

bundles.  The incorrectly mapped inset shows numerous small fragments of polygons 

that were incorrectly mapped while omitted polygons tend to be located near the edge 

of the patch reefs but are not as numerous as the incorrectly mapped oysters.  It would 

appear that the HyMAP image over-estimated the number of pixels that contained 

oysters or because the “apparent truth map” was derived from a smaller spatial 

resolution image the areal extent of oysters is less than the areal extent of the HyMAP 

polygon oyster map and hence the mapped oystyers.  The following figures 4.41 shows 

graphically the over-estimation encountered with using the HyMAP imagery. 

Figure 4.41 – Graphic Representation of HyMAP Over-Estimation 
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4.8.3 AISA MTMF Assessment 

The AISA imagery accuracy assessment was accomplished on the endmember set 

that was derived from the AISA imagery and with mapping that used the in situ 

endmembers that were convolved from 512 bands of the hand-held spectroradiometer to 

match the 7 bands of the AISA image.  One confounding issue with the use of the AISA 

imagery stems from the fact that the AISA image spatial extents are not the same as the 

HyMAP nor the GeoVantage imagery.  The AISA image study area is a single flight line 

that is approximately 170 meters wide and 410 meters long.  Viewing the following 

images it is apparent that the AISA image misses a portion of mapable oysters directly 

north of the BOB 4 study site.  The problem of over-estimation that was described using 

the HyMAP imagery does not present itself with using the AISA imagery since due to the 

fact that the two sets of imagery utilized are closer in spatial resolutions, (GeoVantage is 

0.25 meter and AISA is 0.50 meter spatial resolutions).  The following figures 4.42a – 

4.42c and 4.43a – 4.43c shows the accuracy assessment of the AISA imagery utilizing 

both image derived endmembers and in situ derived endmembers. 



 143

 
 
Figure 4.42a – AISA Image Derived Endmembers Accuracy Assessment 
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Figure 4.42b – AISA Image Derived Endmembers Accuracy Assessment 
 



 145

 
 
Figure 4.42c – Continued AISA Image Derived Endmembers Accuracy Assessment
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Figure 4.43a – AISA In Situ Derived Endmembers Accuracy Assessment  
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Figure 4.43b – Continued AISA In Situ Derived Endmembers Accuracy Assessment  
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Figure 4.43c – AISA In Situ Derived Endmembers Accuracy Assessment  

Correct 
Incorrect 
Omitted



 149

 
Some comments about the two assessments show that the in situ endmembers did 

a better job of mapping oysters correctly than the HyMAP imagery but not a well as the 

image derived endmembers from the AISA imagery.  A rather large are of mud that is 

northwest of the BOB 4 study site was mistaken as oysters in the in situ derived analysis.  

Additionally, the southern portion of the BOB 4 sample site was omitted.  This is 

interesting to note because the aggregated in situ spectral endmembers used were 

composed partly from the southern portion of the study area (BOB4_14, 15, & 16) but 

were not included in the mapped shellfish.  The image derived oyster endmembers had 

far fewer incorrectly mapped and omitted oysters than any of the data sets analyzed.  

Table 4.8 shows the quantitative assessment of the accuracy assessment and shows the 

percent Producer’s Accuracy, User’s Accuracy, and Omission Error  

Table 4.8 Accuracy Assessment Results 

 

The producers accuracy which is a measure of the percent area of correctly 

mapped oysters divided by the area of the total “apparent truth” from the GeoVantage 

imagery is as good a measure of overall accuracy varied from 37% to 67 % with the best 

accuracy found with the image derived endmembers from the AISA imagery.  This is 
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repeated also with the User’s Accuracy, which is a measure of classification accuracy, is 

repeated with the AISA image derived endmembers having 63% accuracy.  The 

Omission Error was lowest with the AISA image derived endmembers (32%).  It is not 

known if these accuracies are reasonable since there hasn’t been any accuracy results 

published in the literature with which to compare.  The HyMAP accuracy results showed 

considerable similarities with a small exception with the spectral subset of bands 2-61 

having a slightly better accuracy and lower omission error than either of the 2-44 bands 

spectral subsets.  Although between the two endmembers analyzed from the image 

derived bright shell and mixed shell from the 2-44 band subset, the Mixed Shellfish 

endmember displays a slightly better producer and user’s accuracy and lower omission 

error than the bright shell.  Overall, the AISA image derived endmember displayed the 

best accuracies and lowest omission error of all the endmembers tested.  Also, the image 

derived endmembers had better accuracies and lower omission errors than the in situ 

derived endmembers.   
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Chapter 5. Conclusions and Future Research 

As in any research, conclusions always divulge more than just an answer to the 

stated hypothesis’ and objectives but invariably generate ancillary answers and many 

more questions that were unknown beforehand.  This research project was no exception 

but before these aspects of the research is explored the answers to the initial stated 

hypothesis’ are as follows: 

Null Hypothesis one Ho1: There is no difference between maps produced by 

either reference library spectra and derived endmembers through MTMF analysis. 

Rejected – Table 4.7 shows the results of the accuracy assessment and shows 

there is a difference between MTMF mapping using in situ generated endmembers than 

endmembers derived directly from the imagery.  Both the Producer’s Accuracy and 

User’s Accuracy showed the best results were obtained using image derived 

endmembers.  This was evident also between the two different remotely sensed data set 

utilized in the research.  The AISA 0.5 x 0.5 meter with 7 bands had better mapping 

accuracy than utilizing HyMAP 4 x 4 meter with either of the two spectral subsets (subset 

1: Bands 2-61 and subset 2: bands 2-44).  The spatial resolution has been identified as a 

possible source of the lower mapping accuracy.  As stated above the raster pixels that are 

4 x 4 meter only identifies pixels that have a higher probability of shellfish occurring 

within the pixels and leaves out the amount or locations of shellfish within the pixel. 
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Null hypothesis two Ho2: There is no spectral difference between live oysters and mud. 

Rejected – There is a significant spectral difference between live oysters and 

mud.  A visual examination of figure 3.11 shows a graph of monthly averaged spectral 

signatures mud and shellfish.  The shellfish utilized in this example was not exhaustive 

but is an example of bright shell, (BOB4_2), live healthy shellfish (BOB4_15 and 

NMF1_11).  The mud spectral curve was compiled from BOB4_13 and NMF2 which has 

incorporated wet / dry and rough / smooth shellfish examples.  One striking example is 

that while the mud and shellfish have relatively low reflectance values the range of 

reflectance values are very narrow.  The slope of the curve from the visible spectrum to 

the short-wave infrared region is similar for both regions and is relatively flat.  This is in 

contrast to the shellfish producing the infrared shift with the presence of photosynthesis 

producing organisms present (diatoms) but conspicuously absent in the mud spectral 

profile. 

More importantly, in the MTMF mapping process in both AISA and HyMAP 

imagery data sets, the ability to map mud and shellfish was demonstrated.  In each of the 

examples in the results section, the maps produced showed remarkable differences 

between mud as opposed to the shellfish map.  Figures 4.21 and 4.22 on pages 104-106 

show the mapping results for the AISA data set and figures 4.22 and 4.23, on pages 107-

108 show the ability to map mud and shellfish endmembers. 

This research spent more than a year measuring spectral responses of multiple 

sample sites and sample points for the creation of an in situ spectral library.  A major 

contribution of this sample period is establishment of the shellfish phenology and 

ascertaining of optimal sampling times throughout the year to gain to optimal shellfish 
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spectra.  It was found that during the winter months and early spring, macro-algae grew 

over the sites obfuscating the shellfish and thus the spectral response of the shellfish.  

This analysis utilized spectral library endmembers that were acquired in October to 

coincide with the same month of acquisition (different years) of the remotely sensed 

imagery.  Additionally, future research should examine the effect of the changing 

environment with in the estuary over time leading to mapping discrepancies in the 

remotely sensed imagery and in situ data.  This aspect is thought to partially explain the 

low accuracy results using the spectral library as noted by Elmore et al. 2000. 

Overall, the ability to map shellfish and mud for both AISA and HyMAP imagery has 

been demonstrated within this report.  Differences exist in the relative accuracy of each 

of the remotely sensed imagery data sets with the AISA imagery having a higher 

accuracy than the HyMAP imagery.  Differences also exist in the use of in situ derived 

spectral endmembers and image derived spectral endmembers with the image derived 

spectral endmembers having a higher accuracy than in situ derived endmembers. 

A future research question would be to examine some of the reasons for why the in situ 

spectral endmembers did not perform as well as the image derived spectral endmembers.  

A future study would examine the field acquisition of in situ endmembers to experiment 

with the number of sample points, in addition aggregating techniques of the sample 

points that demonstrate the optimal areal reflected signature and compared with “pure” 

laboratory spectra. 

This research was able to only distinguish between two classes of shellfish, live shellfish 

that were relatively densely clustered and vertical, and dead horizontal shells that show 

the brightly reflective inside of the shell that has been sun bleached.  Future research 
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should focus on the ability to differentiate more subtle differences and classes of 

shellfish.  All of this research focused mainly on the larger patch reefs and to lesser 

extent fringing reefs along the shore.  Future research should utilize imagery and 

classification techniques that emphasize not only on the smaller patch reefs but fringing 

reefs as well. 
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Chapter 7. Appendix 

7.1 Intertidal Oyster Strata Description 

Strata “A” Approximately 11,974 bushels of live oysters per acre. Most productive 
oyster strata in the intertidal zone and having the greatest yield per acre 
of densely clustered live oysters. Exhibits little exposed dead shell or 
mud and the shell matrix is not visible. 

Strata “B” Approximately 2,905 bushels of live oysters per acre. Characterized by 
having little vertical or clustered crop. Found in the lower intertidal 
zone and are frequently single. Located on heavily shelled grounds with 
thin shell matrices. 

Strata “C” Approximately 2,164 bushels of live oysters per acre. Characterized by 
vertical clusters with spatial separation. Substrate is usually mud with 
little or no surrounding shell. Spatial separation between clusters ranges 
from a distance equal to the height  of an individual cluster to 
approximately one meter. 

Strata “D” Approximately 225 bushels of live oysters per acre. Characterized by 
scattered live oysters usually integrated with large quantities of washed 
or dead shell. Found in the lower tidal zone on hard substrate. Hard 
clams live sympatrically in this area. 

Strata “E” Approximately 7,638 bushels of live oysters per acre. Characterized by 
heavily overgrown and difficult to harvest. Oysters are tightly clustered 
and completely cover the substrate. Occasional mud and sand 
infiltration within interstitial spaces and Spartina alterniflora growing 
within in-filled areas. Found at the highest oyster growing elevation 
and is further characterized by oysters with thin, sharp shells. 

Strata “F” Approximately 4,597 bushels of live oysters per acre. Characterized by 
mostly vertical clusters. Very similar to “C” strata except substrate is 
composed mostly of shells and very little amounts of mud with few 
horizontal oysters. 

Strata “F1” Approximately 2,598 bushels of live oysters per acre. Characterized by 
small vertical clusters evenly dispersed within a substrate of small 
horizontally oriented oysters. Very little exposed mud. 

Strata “G” Approximately 5,385 bushels of live oysters per acre. Characterized by 
vertical, clustered oysters that predominate. Spatial separation between 
clusters is equal to or less than height of the standing crop.  

Strata “M” Less than 20 bushels of oysters per acre. Characterized by scattered live 
oysters, which are small and show negligible aggregation. Surrounded 
by highly permeable mud substrate. 

Strata “P” Near minimum density of oysters in intertidal zone. Characterized by 
recently harvested zone with very few marketable oysters remaining. 
Considered to be productive since recent condition is due to harvesting 
and they will propagate to the next higher category by natural or 
artificial recovery. 

Source: South Carolina Department of Natural Resources, Intertidal Oyster Survey. 
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7.2 Field Sample Locations 
 

Sample Site Sample Point Easting Northing 

Jones Creek 
JONES CREEK 3 

REF 669276.7672 3685877.6819 
Jones Creek JC1_1 670043.7899 3687198.1627 
Jones Creek JC1_2 670043.7543 3687201.5818 
Jones Creek JC1_3 670043.7543 3687202.6503 
Jones Creek JC1_4 670043.7543 3687203.5763 

        
Jones Creek JC2_1 670051.7678 3687199.1956 
Jones Creek JC2_2 670051.5898 3687201.7599 
Jones Creek JC2_3 670051.5185 3687202.6503 
Jones Creek JC2_4 670051.4829 3687203.7188 

        
Jones Creek JC3_1 669279.5539 3685875.8580 
Jones Creek JC3_2 669279.4311 3685877.6998 
Jones Creek JC3_3 669279.0014 3685879.5416 
Jones Creek JC3_4 669278.2033 3685881.6289 

        
Bob's Garden BOB1_REF 669236.9192 3687467.5518 
Bob's Garden BOB1_1 669238.1615 3687467.3164 
Bob's Garden BOB1_2 669240.0173 3687464.8586 
Bob's Garden BOB1_3 669236.3635 3687468.1815 
Bob's Garden BOB1_4 669237.7885 3687465.5452 
Bob's Garden BOB1_5 669235.6967 3687465.6597 
Bob's Garden BOB1_6 669238.4052 3687463.4205 

        
Bob's Garden BOB2_REF 669232.9159 3687471.5942 
Bob's Garden BOB2_1 669234.1219 3687472.9988 
Bob's Garden BOB2_2 669233.4280 3687472.3156 
Bob's Garden BOB2_3 669232.1599 3687471.0794 
Bob's Garden BOB2_4 669231.0509 3687469.9704 

        
Bob's Garden BOB3_1 669231.4774 3687476.3257 
Bob's Garden BOB3_2_REF 669230.6826 3687475.4348 
Bob's Garden BOB3_3 669229.8993 3687474.8328 
Bob's Garden BOB3_4 669228.7523 3687473.5778 

        
Bob's Garden BOB4_REF 668981.9413 3687654.1416 
Bob's Garden BOB4_1 668982.2619 3687652.2184 
Bob's Garden BOB4_2 668982.4182 3687651.0349 
Bob's Garden BOB4_3 668982.6143 3687649.8305 
Bob's Garden BOB4_4 668982.7448 3687648.6244 
Bob's Garden BOB4_5 668983.0077 3687646.7638 
Bob's Garden BOB4_6 668983.3747 3687644.2947 
Bob's Garden BOB4_7 668989.9653 3687647.9513 
Bob's Garden BOB4_8 668990.8673 3687646.1135 
Bob's Garden BOB4_9 668998.3891 3687652.9457 
Bob's Garden BOB4_10 668999.6562 3687652.9892 
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Bob's Garden BOB4_11 668994.5842 3687661.2875 
Bob's Garden BOB4_12 668995.8713 3687662.3824 
Bob's Garden BOB4_13 668983.8106 3687662.1515 
Bob's Garden BOB4_14 668963.0273 3687621.7905 
Bob's Garden BOB4_15 668962.4440 3687620.0907 
Bob's Garden BOB4_16 668962.0215 3687618.6197 
Bob's Garden BOB4_17 668960.8549 3687615.0498 
Bob's Garden BOB4_18 668961.9255 3687613.4081 
Bob's Garden BOB4_19 668971.5387 3687627.3714 
Bob's Garden BOB4_20 668973.2441 3687627.0020 
Bob's Garden BOB4_21 668973.0278 3687637.3203 
Bob's Garden BOB4_22 668974.9505 3687637.3442 

        

No Man's Friend 
NMF1_Reference 

Post 667329.5542 3687470.2526 
No Man's Friend NMF1_1 667336.1839 3687466.8292 
No Man's Friend NMF1_2 667336.9749 3687466.8774 
No Man's Friend NMF1_3 667337.5231 3687466.1555 
No Man's Friend NMF1_4 667336.4530 3687466.1892 
No Man's Friend NMF1_5 667331.8690 3687463.2383 
No Man's Friend NMF1_6 667332.2426 3687462.5891 
No Man's Friend NMF1_7 667332.4999 3687461.6144 
No Man's Friend NMF1_8 667326.0631 3687463.4448 
No Man's Friend NMF1_9 667325.6330 3687462.7938 
No Man's Friend NMF1_10 667327.7505 3687469.4961 
No Man's Friend NMF1_11 667325.1321 3687471.5327 
No Man's Friend NMF1_12 667320.1863 3687484.4499 
No Man's Friend NMF1_13 667315.5896 3687484.9736 
No Man's Friend NMF1_14 667330.8343 3687469.3216 
No Man's Friend NMF1_15 667332.9290 3687468.0415 
No Man's Friend NMF1_16 667334.6164 3687467.1105 
No Man's Friend NMF1_17 667326.4704 3687463.9685 

        
No Man's Friend NMF 2 MUD 3688194.1614 667325.1321 

      
All Eastings and Northings derived from UTM, Zone 17N, NAD83   
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   7.3 Table of Spectral Aggregation 
 

        
  IN-SITU SPECTRORADIOMETIC DATA    
  2ND LEVEL AGGREGATION    
      

CLUSTER DESCRIPTION SAMPLE 
POINTS 

  (BOB A-C are aggregated from BOB 1-3 sample sites)   
BOB A  BOB1_1   

   BOB1_2   
   BOB2_1   
    BOB3_1   

BOB B  BOB1_3   
   BOB1_4   
   BOB2_2   
    BOB3_2   

BOB C  BOB1_5   
   BOB1_6   
   BOB2_3   
   BOB2_4   
   BOB3_3   
    BOB3_4   

  (BOB D- G are aggregated from BOB4 sample 
site)    

BOB D  BOB4_1   
   BOB4_2   
   BOB4_3   
    BOB4_4   

BOB E  BOB4_7   
   BOB4_8   
   BOB4_11   
   BOB4_12   
   BOB4_17   
   BOB4_18   
   BOB4_20   
    BOB4_22   

BOB F  BOB4_9   
    BOB4_10   

BOB G  BOB4_5   
   BOB4_14   
   BOB4_15   
   BOB4_16   
   BOB4_19   
    BOB4_21   
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  (NMF A – C  are aggregated from NMF 1 sample site)   

NMF A  NMF1_1   
   NMF1_2   
   NMF1_3   
   NMF1_4   
   NMF1_5   
   NMF1_6   
   NMF1_7   
   NMF1_8   
    NMF1_9   

NMF B  NMF1_10   
    NMF1_11   

NMF C  NMF1_12   
   NMF1_14   
   NMF1_15   
    NMF1_16   

NMF D   NMF2 ALL SAMPLE POINTS   

  (JC A & B  are aggregated from JONES CREEK sample 
sites 1 & 2)   

JC A  JC1_1   
    JC2_1   

JC B  JC1_2   
   JC1_3   
   JC1_4   
   JC2_2   
   JC2_3   
    JC2_4   

  (JC C & D  are aggregated from JONES CREEK sample 
site 3   

  WASHED SHELL are separated into WET and DRY)   
JC C DRY  JC3_1   

   JC3_2   
   JC3_3   
    JC3_4   
JC D WET   JC3_1   

   JC3_2   
   JC3_3   
    JC3_4   
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MISCELLANEOUS CLASSES     

WET U 

Sample points that are submerged 
or partially submerged. Classed as 
either NMF (No Man’s Friend) or 
BOB (includes BOB sample sites 
1-4). 

   

   
MUD BOB4_13 mud sample point.   

       

CONCRETE PAD Concrete pad at clambank used as reference and 
control.  

       

WATER Spectroradiometer samples of deep water at 
sample sites.  

       

SPARTINA Jones Creek sample sites 1 and 2 & No Man’s 
Friend 1_13.  
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    7.4 Table of Sampling Dates and Tide Levels 
Sampling Schedule for 2002-2003   
      

Month Date Time Height 
July, 2002 9th & 10th 1:34 PM / 2:21 PM -.01 / -0.03 
    
August, 2002 20th & 21st 12:29 PM 0.3 
    
September 19th & 20th 12:10 PM / 12:55 PM 0.6 / 0.5 
    
October 2nd & 3rd 10:35 AM/11:36 AM 0.6 / 0.4 
    
November 14th & 15th 09:21 AM /10:13 AM 1.1 / 1 
    
December 30th & 31st 10:39 AM/11:36 AM 0 / -0.2 
    
January, 2003 29th &  February 1st 11:54 AM / 2:17 PM  -0.6 / -.04 
     

February March 3rd & 4th 2:29 PM / 3:05 PM  -0.2 /-0.2 
     
March 31st & April 1st 1:19 PM / 1:55 PM  0.0 / -.01 
     
April 14th & 15th 12:58 PM / 1:47 PM -0.3 / -0.7 
     
May Monday, 12th 12:36 PM 0.2 
     
June 24th & 25th 10:55 AM / 11:40 AM  0.3/ 0.3 
    
July 9th & 27th 10:34 AM / 1:20 PM -.03 / 0.2 

 


