Living Shorelines
The Science and Management of Nature-Based Coastal Protection
The CRC Marine Science Series is dedicated to providing state-of-the-art coverage of important topics in marine biology, marine chemistry, marine geology, and physical oceanography. The series includes volumes that focus on the synthesis of recent advances in marine science.

CRC MARINE SCIENCE SERIES

SERIES EDITORS

Michael J. Kennish, Ph.D. and Judith S. Weis

PUBLISHED TITLES

Acoustic Fish Reconnaissance, I.L. Kalikhman and K.I. Yudanov
Artificial Reef Evaluation with Application to Natural Marine Habitats, William Seaman, Jr.
The Biology of Sea Turtles, Volume I, Peter L. Lutz and John A. Musick
Chemical Oceanography, Third Edition, Frank J. Millero
Coastal Ecosystem Processes, Daniel M. Alongi
Coastal Lagoons: Critical Habitats of Environmental Change, Michael J. Kennish and Hans W. Paerl
Coastal Pollution: Effects on Living Resources and Humans, Carl J. Sindermann
Climate Change and Coastal Ecosystems: Long-Term Effects of Climate and Nutrient Loading on Trophic Organization, Robert J. Livingston
Ecology of Estuaries: Anthropogenic Effects, Michael J. Kennish
Ecology of Marine Invertebrate Larvae, Larry McEdward
Ecology of Seashores, George A. Knox
Environmental Oceanography, Second Edition, Tom Beer
Estuarine Indicators, Stephen A. Bortone
Estuarine Research, Monitoring, and Resource Protection, Michael J. Kennish
Estuary Restoration and Maintenance: The National Estuary Program, Michael J. Kennish
Eutrophication Processes in Coastal Systems: Origin and Succession of Plankton Blooms and Effects on Secondary Production in Gulf Coast Estuaries, Robert J. Livingston
Habitat, Population Dynamics, and Metal Levels in Colonial Waterbirds: A Food Chain Approach, Joanna Burger, Michael Gochfeld
Handbook of Marine Mineral Deposits, David S. Cronan
Handbook for Restoring Tidal Wetlands, Joy B. Zedler
Intertidal Deposits: River Mouths, Tidal Flats, and Coastal Lagoons, Doeke Eisma
Living Shorelines: The Science and Management of Nature-Based Coastal Protection, Donna Marie Bilkovic, Molly M. Mitchell, Megan K. La Peyre, and Jason D. Toft
Marine Chemical Ecology, James B. McClintock and Bill J. Baker
Ocean Pollution: Effects on Living Resources and Humans, Carl J. Sindermann
Physical Oceanographic Processes of the Great Barrier Reef, Eric Wolanski
Pollution Impacts on Marine Biotic Communities, Michael J. Kennish
Practical Handbook of Estuarine and Marine Pollution, Michael J. Kennish
Practical Handbook of Marine Science, Third Edition, Michael J. Kennish
Restoration of Aquatic Systems, Robert J. Livingston
Seagrasses: Monitoring, Ecology, Physiology, and Management, Stephen A. Bortone
Trophic Organization in Coastal Systems, Robert J. Livingston
Contents

Foreword ...ix
Acknowledgments ..xiii
List of Contributors ...xv

Part I
Background

Chapter 1
A Primer to Living Shorelines...3
Donna Marie Bilkovic, Molly M. Mitchell, Jason D. Toft, and Megan K. La Peyre

Chapter 2
Living Shorelines for People and Nature...11
Katie K. Arkema, Steven B. Scyphers, and Christine Shepard

Part II
Management, Policy, Design

Chapter 3
Permitting a Living Shoreline: A Look at the Legal Framework Governing Living Shoreline
Projects at the Federal, State, and Local Level.. 33
Niki L. Pace

Chapter 4
Socioeconomic and Policy Considerations of Living Shorelines—US Context 51
Kateryna M. Wowk and David Yoskowitz

Chapter 5
An Overview of the Living Shorelines Initiative in New York and New Jersey65
Andrew Rella, Jon Miller, and Emilie Hauser

Chapter 6
Overcoming Barriers to Living Shoreline Use and Success: Lessons from Southeastern
Virginia’s Coastal Plain...87
Kevin R. Du Bois
Chapter 7
Green Shores: Using Voluntary Ratings and Certification Programs to Guide Sustainable Shoreline Development ... 113
Brian Emmett, D.G. Blair, and Nicole Faghin

Chapter 8
Building with Nature as Coastal Protection Strategy in the Netherlands 137
Bas W. Borsje, Sierd de Vries, Stephanie K.H. Janssen, Arjen P. Luijendijk, and Vincent Vuik

Chapter 9
Managed Realignment in Europe: A Synthesis of Methods, Achievements, and Challenges 157
Luciana S. Esteves and Jon J. Williams

Part III
Synthesis of Living Shoreline Science: Physical Aspects

Chapter 10
Practical Living Shorelines: Tailored to Fit in Chesapeake Bay .. 185
Walter I. Priest III

Chapter 11
Response of Salt Marshes to Wave Energy Provides Guidance for Successful Living Shoreline Implementation ... 211
Carolyn A. Currin, Jenny Davis, and Amit Malhotra

Chapter 12
Lessons Learned from Living Shoreline Stabilization in Popular Tourist Areas: Boat Wakes, Volunteer Support, and Protecting Historic Structures .. 235
Linda Walters, Melinda Donnelly, Paul Sacks, and Donna Campbell

Chapter 13
Growing Living Shorelines and Ecological Services via Coastal Bioengineering 249
Steven G. Hall, Robert Beine, Matthew Campbell, Tyler Ortego, and Jon D. Risinger

Chapter 14
Evaluation of Living Shoreline Marshes as a Tool for Reducing Nitrogen Pollution in Coastal Systems ... 271
Aaron J. Beck, Randy M. Chambers, Molly M. Mitchell, and Donna Marie Bilkovic
Part IV
Synthesis of Living Shoreline Science: Biological Aspects

Chapter 15
Designing Living Shoreline Salt Marsh Ecosystems to Promote Coastal Resilience 293
Donna Marie Bilkovic and Molly M. Mitchell

Chapter 16
Ecological Performance of Hudson River Shore Zones: What We Know and What We Need to Know .. 317
David L. Strayer and Stuart E.G. Findlay

Chapter 17
San Francisco Bay Living Shorelines: Restoring Eelgrass and Olympia Oysters for Habitat and Shore Protection .. 333
Katharyn Boyer, Chela Zabin, Susan De La Cruz, Edwin Grosholz, Michelle Orr, Jeremy Lowe, Marilyn Latta, Jen Miller, Stephanie Kiriakopolos, Cassie Pinnell, Damien Kunz, Julien Moderan, Kevin Stockmann, Geana Ayala, Robert Abbott, and Rena Obernolte

Chapter 18
Comparison of Oyster Populations, Shoreline Protection Service, and Site Characteristics at Seven Created Fringing Reefs in Louisiana: Key Parameters and Responses to Consider............ 363
Megan K. La Peyre, Lindsay Schwarting Miller, Shea Miller, and Earl Melancon

Chapter 19
Species Richness and Functional Feeding Group Patterns in Small, Patchy, Natural and Constructed Intertidal Fringe Oyster Reefs ... 383
Mark S. Peterson, Kevin S. Dillon, and Christopher A. May

Chapter 20
Ecosystem Services Provided by Shoreline Reefs in the Gulf of Mexico: An Experimental Assessment Using Live Oysters .. 401
Kenneth L. Heck, Jr., Just Cebrian, Sean P. Powers, Nate Gerald, Rochelle Plutchak, Dorothy Byron, and Kelly Major

Chapter 21
Benches, Beaches, and Bumps: How Habitat Monitoring and Experimental Science Can Inform Urban Seawall Design .. 421
Jeffery R. Cordell, Jason D. Toft, Stuart H. Munsch, and Maureen Goff
Chapter 22
The Ecological Impacts of Reengineering Artificial Shorelines: The State of the Science........439
Mark Anthony Browne and M.G. Chapman

Part V
Summary and Future Guidance

Chapter 23
Gaps in Knowledge: Information We Still Need to Know about Living Shoreline Erosion
Control ...461
Jana Davis

Chapter 24
A Synthesis of Living Shoreline Perspectives ...483
Jason D. Toft, Donna Marie Bilkovic, Molly M. Mitchell, and Megan K. La Peyre

Index ..489
It is likely that only the few who have never been exposed to the shores of oceans or large lakes are unfamiliar with the human struggle to supplant nature’s dominance over shoreline stability. The so-called hardening of shorelines is a historic and pervasive alteration of coastal environments to counteract change, understandably to counter the devastative effects of major storms and sea level rise but occasionally simply for cosmetic purposes (Charlier et al. 2005; Nordstrom 2000). It has virtually been incorporated into the DNA of those who have occupied or managed shorelines since the first human millennium. Consider the persistent remnants of the seawall still standing on the shores of Batroun Bay, Lebanon, built by the Phoenicians in ca. 1st century BC, or the oak castrum seawall-equivalent that protected the 10th-century St. Donatian's church in Bruges, Belgium, in an era when the medieval town once fronted the sea and Vikings rode the waves. The long history of human desire to dominate nature is now manifest in vast coastal infrastructures of sea walls, groins, revetments, gabions, breakwaters, and other static engineered structures for coastal protection.

This irony is, of course, that the ecosystem goods and services provided by natural shorelines are the consequence of their naturally dynamic character. What we increasingly recognize as the functions and values of erodible shorelines more often than not depend on energetic erosion and accretion processes that maintain a dynamic equilibrium, but not necessarily a spatially static landform. As Dean (1999) observed, “Shoreline hardening to thwart nature’s ebb and flow is therefore the antithesis of beach conservation.”

Increasing recognition of the physical–ecological processes that account for resilient, sustainable shorelines has necessitated reassessment of the static shoreline model. With accelerated sea level rise, as well as cumulative development along coasts, we have begun to recognize coastal zones as linked social–ecological systems, where human effects and natural processes complicate system dynamics (Kittinger and Ayers 2010). However, reinstituting natural ecosystem processes to promote a full suite of natural ecosystem goods and services is generally unfeasible under all but the most reversible conditions. While “ecohydrology” and other physicochemical principles can be employed to shift shoreline ecosystems more toward their remaining natural potential, “ecoengineering” approaches are often necessary to adapt to the persistent effects of shoreline degradation, climate change, and socioeconomic and societal constraints that limit or target delivery of specific goods and services, such as public safety (Elliott et al. 2016). The result is more often than not a “novel” ecosystem state, where rehabilitation or reallocation are the only options to restoration (Aronson and Le Floc’h 1996; Bullock et al. 2011; Hobbs et al. 2013). While not restoration per se, such “hybrid” nature-based approaches to living shorelines may be intended or even designed to provide shoreline protection and ecological function as a “win–win” for both society and ecology, albeit with acknowledged trade-offs (Elliott et al. 2016; Rosenzweig 2003).

This volume is likely the first consolidation of the science and application of living shorelines that encapsulates diffuse approaches to and lessons learned from such “win–win” ecoengineering. Although the authors’ context of living shorelines is broad—constrained only by the degree to which the connection between aquatic and terrestrial habitats is maintained and engineered structures dominate—they capture the common purpose of protecting shorelines and infrastructure as well as conserving, creating, or restoring natural shoreline functions in estuarine, marine, and aquatic systems (Bilkovic et al., Chapter 1). That the impetus to pursue living shorelines is accelerating, perhaps commensurate with coastal squeeze, argues for synthetic critique of available nature-based tools, documented ecosystem goods and services, social or economic metrics, legal and policy considerations, and approaches to community engagement that this volume offers. The regions, ecosystems, scales, and perspectives represented across the 24 chapters capture much of the variability in approaches to and results from living shorelines around the world. Various “beach to reach” scale investigations are represented from estuaries around North America, particularly from Chesapeake...
Bay, the Louisiana–Mississippi Gulf of Mexico, and Australia, to broader, programmatic-scale examples provided from the Netherlands, United Kingdom, and France. Diverse ecosystems are also well represented, from confined estuaries to estuarine complexes, such as Chesapeake Bay, San Francisco Bay, and Puget Sound, to coastal shorelines of Europe. As imagined from the plethora of approaches to shoreline armoring, the applications are as divergent, from removal/modification of coastal levees and other extensively engineered features of open shores to seawalls of urban and port settings. Perhaps most attractive to the manager and practitioners of living shorelines, the perspectives span the spectrum of factors they will need to evaluate, including social and regulatory considerations they will need to build a supporting constituency, to detailed scientific and technical information that will be required to justify and design living shoreline projects. Perhaps the intrinsic value available in these chapters, and particularly in Davis’ Chapter 23 on knowledge gaps, may be the lessons learned that authors have sought to synthesize and extrapolate into what is required in moving forward to advance the state of knowledge. In many respects, a thorough reading of this volume should provide the essential experience for adaptive learning to the next era of shoreline armoring. This is particularly the case for many of the examples and recommendations for metrics to assess the need (e.g., wave power, Chapter 11), structural effectiveness (e.g., structure–current interactions, Chapter 12), or ecosystem goods and services responses (e.g., faunal biodiversity and populations, Chapters 17, 19, 20, and 22) of alternative living shorelines.

Perhaps one of the most notable sources of living shorelines rationale represented in these chapters are clear measures of ecosystem goods and services that can derive from living shorelines elements. Diminution of wave and tidal surge effects on shoreline erosion are the most intuitive, especially as presented as guidance based on technical information on responses of tidal marshes to wave power (e.g., Chapters 11 and 13). However, nutrient reduction (e.g., Chapter 14) and particularly fauna colonization and diversity (e.g., Chapters 15, 17, 19, 20, 21, and 22) substantiate the potential contributions of different living shoreline approaches. Strayer and Findlay (Chapter 16) measurably advance this assessment further by providing an analysis across metrics of ecosystem structure (biodiversity), functions (decomposition), and services (recreation).

As with any multifaceted volume of this breadth, where most contributions are reviews of very different perspectives on living shorelines in specific regions and ecosystems, the level of detail and generality vary. Accordingly, the reader should recognize that much of the real value is the background cited studies that the authors draw on and relate to. Note that there remain considerable uncertainties about the approach and benefit of living shorelines recognized both implicitly and explicitly in these chapters, and most comprehensively by Davis in Chapter 23. For instance, it is still a struggle to find in this volume and the supporting literature examples of rigorously scientific (e.g., BACI, randomized control) comparisons of the ecosystem outputs, goods, services, or functions among typically armored shorelines, completely natural shorelines, and living shoreline constructs that are propositioned as alternatives (see Gap #9, Chapter 23). Similarly, quite often the application of idealized living shoreline features, particularly oyster reefs and seagrasses, to the construction of living shoreline projects for shoreline protection is not explicitly transferable (e.g., often the findings are from regions of estuaries and coasts not particularly vulnerable to shoreline erosion). An analysis that may have to be addressed in the next iteration of this volume is the cumulative and interactive effects of living shoreline elements, as it seems this approach or issue has yet to be addressed opportunistically or experimentally.

If there is any perspective that still dominates living shorelines, it is that “natural elements” are broadly recognized as the primary tool of living shorelines. Except for the large, coastal-scale approaches (e.g., managed realignment), ecosystem process-based approaches are less often considered as viable alternatives, either in socioeconomic analyses of trade-offs or in presenting long-term prognoses of shoreline change with stakeholders. For a vast array of shoreline protection scenarios, novel ecosystems are the only feasible outcome of such hybrid approaches that involve implanting specific features, either for the purpose of enhanced biodiversity and ecological function or...
for specific ecosystem goods and services. Enhancing the ecological and other functions in socio-economically constrained settings such as seawalls is a given win–win. However, in the predicted future of rising seas and intensifying climate events, the sustainability of living shorelines will need to be assessed much more meticulously with nature-based approaches scaled from the long-term synthetic plans to incremental, site-specific solutions that take advantage of natural processes rather than just unmaintainable features. This volume provides critical insights into the science and technical, sociocultural, and practical factors that will ultimately be required for decisions about how to move in that direction.

C. A. Simenstad
School of Aquatic and Fishery Sciences
University of Washington
Seattle, Washington

REFERENCES

Acknowledgments

We are exceedingly grateful to the authors of the chapters in this book who expertly shared their wealth of knowledge on living shorelines and were patient and responsive throughout the lengthy process of editing and publishing this volume.

The chapters in the book have benefited by insightful peer review and thoughtful discussions with numerous colleagues. We extend our gratitude to the following: Michael Piehler, University of North Carolina; Christine Shepard, The Nature Conservancy; Lesley Dafforn, University of New South Wales; Karen Dyson, University of Washington; Pamela Mason, Virginia Institute of Marine Sciences; Pam Morgan, University of New England; Judy Haner, The Nature Conservancy; Judith Weis, Rutgers University; Chris Boyd, Troy University; Greg Tolley, Florida Gulf Coast University; Ariana Sutton-Grier, University of Maryland; Rachel Gittman, Northeastern University; Steve Jacobus, New Jersey Department of Environmental Protection; Kate Boicourt, NY–NJ Harbor & Estuary Program; Colleen Mercer Clarke, Partnership for Canada–Caribbean Climate Change Adaptation; Niki Pace, Mississippi–Alabama Sea Grant Legal Program; Mike Vasey, San Francisco Bay National Estuarine Research Reserve; Jennifer Ruesink, University of Washington; Eliza Heery, University of Washington; Stuart Munsch, University of Washington; Carl Hershner, Virginia Institute of Marine Science; Karl Nordstrom, Rutgers University; Sid Narayan, University of California; Erik Van Slobbe, Wageningen University and Research; Joanna Rosman, University of North Carolina; Karinna Nunez, Virginia Institute of Marine Science; Joost Stronkhorst, Deltares; Rob Francis, King’s College London; Michael Chadwick, King’s College London; Louise Wallendorf, United States Naval Academy; Stephen Scyphers, Northeastern University; Jon Miller, Stevens Institute of Technology; Julie Bradshaw, Virginia Institute of Marine Science; Neville Reynolds, VHB, Inc.; Kirk Havens, Virginia Institute of Marine Science; Jenny Davis, NOAA; Scott Hardaway, Virginia Institute of Marine Science; Karen Duhring, Virginia Institute of Marine Science; Amy Smith Kyle, The Nature Conservancy; and Bryan Piazza, The Nature Conservancy.

Special thanks are extended to John Sulzycki and Jennifer Blaise with CRC Press/Taylor & Francis Group, and Judy Weis with Rutgers University, who helped guide us through the process and were a pleasure to work with from start to finish.
List of Contributors

Robert Abbott
ENVIRON International Corporation
Emeryville, California

Katie K. Arkema
The Natural Capital Project
Stanford University
c/o School of Environmental and Forest Sciences
University of Washington
Seattle, Washington

Geana Ayala
San Francisco State University
Romberg Tiburon Center for Environmental Studies
Tiburon, California

and

University of California, Davis
Department of Environmental Science and Policy
Davis, California

Aaron J. Beck
Virginia Institute of Marine Science
College of William & Mary
Gloucester Point, Virginia

Robert Beine
Biological and Agricultural Engineering
Louisiana State University Agricultural Center
Baton Rouge, Louisiana

Donna Marie Bilkovic
Virginia Institute of Marine Science
College of William & Mary
Gloucester Point, Virginia

D.G. Blair
Stewardship Centre for BC
Canada

Bas W. Borsje
University of Twente
Department of Water Engineering and Management
Enschede, The Netherlands

Katharyn Boyer
San Francisco State University
Romberg Tiburon Center for Environmental Studies
Tiburon, California

Mark Anthony Browne
Evolution and Ecology Research Centre
School of Biological, Earth and Environmental Sciences
University of New South Wales
Sydney, New South Wales, Australia

Dorothy Byron
Dauphin Island Sea Lab
Dauphin Island, Alabama

Donna Campbell
Department of Biology
University of Central Florida
Orlando, Florida

Matthew Campbell
North Carolina State University
Raleigh, North Carolina

Just Cebrian
Dauphin Island Sea Lab
Dauphin Island, Alabama

and

Department of Marine Sciences
University of South Alabama
Mobile, Alabama

Randy M. Chambers
College of William & Mary
Williamsburg, Virginia
M.G. Chapman
Centre for Research on Ecological Impacts of Coastal Cities
School of Life and Environmental Science
University of Sydney
Sydney, New South Wales, Australia

Jeffery R. Cordell
School of Aquatic and Fishery Sciences
University of Washington
Seattle, Washington

Carolyn A. Currin
NOAA
NCCOS Center for Coastal Fisheries and Habitat Research
Beaufort, North Carolina

Jana Davis
Chesapeake Bay Trust
Annapolis, Maryland

Jenny Davis
CSS
NOAA
NCCOS Center for Coastal Fisheries and Habitat Research
Beaufort, North Carolina

Susan De La Cruz
U.S. Geological Survey
Western Ecological Research Center
San Francisco Bay Estuary Field Station
Vallejo, California

Sierd de Vries
Delft University of Technology
Department of Hydraulic Engineering
Delft, The Netherlands

Kevin S. Dillon
Department of Coastal Sciences
The University of Southern Mississippi
Ocean Springs, Mississippi

Melinda Donnelly
Department of Biology
University of Central Florida
Orlando, Florida

Kevin R. Du Bois
Former staff to the Norfolk Wetlands Board and
Living Shoreline Practitioner
Norfolk, Virginia

Brian Emmett
Archipelago Marine Research
Victoria, British Columbia, Canada

Luciana S. Esteves
Faculty of Science and Technology
Bournemouth University
Talbot Campus
Poole, Dorset, United Kingdom

Nicole Faghin
Coastal Management Specialist
Washington Sea Grant
Seattle, Washington

Stuart E.G. Findlay
Cary Institute of Ecosystem Studies
Millbrook, New York

Nate Geraldi
King Abdullah University of Science and Technology
Thuwal, Saudi Arabia

Maureen Goff
School of Aquatic and Fishery Sciences
University of Washington
Seattle, Washington

Edwin Grosholz
University of California, Davis
Department of Environmental Science and Policy
Davis, California

Steven G. Hall
Marine Aquaculture Research Center
Biological and Agricultural Engineering
North Carolina State University
Raleigh, North Carolina
LIST OF CONTRIBUTORS

Emilie Hauser
Hudson River National Estuarine Research Reserve
NEIWPCC New York State Department of Environmental Conservation
Staatsburg, New York

Kenneth L. Heck, Jr.
Dauphin Island Sea Lab
Dauphin Island, Alabama

and

Department of Marine Sciences
University of South Alabama
Mobile, Alabama

Stephanie K.H. Janssen
Deltares
and
Delft University of Technology
Department Multi Actors Systems
Delft, The Netherlands

Stephanie Kiriakopolos
San Francisco State University
Romberg Tiburon Center for Environmental Studies
Tiburon, California

and

University of California, Davis
Department of Environmental Science and Policy
Davis, California

Damien Kunz
Environmental Science Associates
San Francisco, California

Megan K. La Peyre
U.S. Geological Survey
Louisiana Fish and Wildlife Cooperative Research Unit
School of Renewable Natural Resources
Louisiana State University Agricultural Center
Baton Rouge, Louisiana

Marilyn Latta
State Coastal Conservancy
Oakland, California

Jeremy Lowe
Environmental Science Associates
and
San Francisco Estuary Institute
San Francisco, California

Arjen P. Luijendijk
Deltares
and
Delft University of Technology
Department of Hydraulic Engineering
Delft, The Netherlands

Kelly Major
Department of Biology
University of South Alabama
Mobile, Alabama

Amit Malhotra
JHT
NOAA
NCCOS Center for Coastal Fisheries and Habitat Research
Beaufort, North Carolina

Christopher A. May
The Nature Conservancy in Michigan
Lansing, Michigan

Earl Melancon
Department of Biological Sciences
Nicholls State University
Thibodaux, Louisiana

Jen Miller
San Francisco State University
Romberg Tiburon Center for Environmental Studies
Tiburon, California

Jon Miller
Stevens Institute of Technology
Hoboken, New Jersey
Lindsay Schwarting Miller
School of Renewable Natural Resources
Louisiana State University Agricultural Center
Baton Rouge, Louisiana

Shea Miller
School of Renewable Natural Resources
Louisiana State University Agricultural Center
Baton Rouge, Louisiana

Molly M. Mitchell
Virginia Institute of Marine Science
College of William & Mary
Gloucester Point, Virginia

Julien Moderan
San Francisco State University
Romberg Tiburon Center for Environmental Studies
Tiburon, California

Stuart H. Munsch
School of Aquatic and Fishery Sciences
University of Washington
Seattle, Washington

Rena Obernolte
Isla Arena Consulting
Emeryville, California

Michelle Orr
Environmental Science Associates
San Francisco, California

Tyler Ortego
OraEstuaries
Metairie, Louisiana

Niki L. Pace
Louisiana Sea Grant Law & Policy Program
Louisiana State University
Baton Rouge, Louisiana

Mark S. Peterson
Department of Coastal Sciences
The University of Southern Mississippi
Ocean Springs, Mississippi

Cassie Pinnell
San Francisco State University
Romberg Tiburon Center for Environmental Studies
Tiburon, California

Rochelle Plutchak
Department of Marine Sciences
University of South Alabama
Mobile, Alabama

and

Dauphin Island Sea Lab
Dauphin Island, Alabama

and

National Oceanic and Atmospheric Administration
Silver Spring, Maryland

Sean P. Powers
Department of Marine Sciences
University of South Alabama
Mobile, Alabama

and

Dauphin Island Sea Lab
Dauphin Island, Alabama

Walter I. Priest III
Wetland Design and Restoration
Bena, Virginia

Andrew Rella
Stevens Institute of Technology
Hoboken, New Jersey

Jon D. Risinger
Biological and Agricultural Engineering
Louisiana State Agricultural Center
Baton Rouge, Louisiana

Paul Sacks
Science Department
Winter Springs High School
Winter Springs, Florida
Steven B. Scyphers
Department of Marine and Environmental Sciences
Marine Center
Northeastern University
Nahant, Massachusetts

Christine Shepard
The Gulf of Mexico Program
The Nature Conservancy
Punta Gorda, Florida

Kevin Stockmann
San Francisco State University
Romberg Tiburon Center for Environmental Studies
Tiburon, California

David L. Strayer
Cary Institute of Ecosystem Studies
Millbrook, New York

Jason D. Toft
School of Aquatic and Fishery Sciences
University of Washington
Seattle, Washington

Vincent Vuik
Delft University of Technology
Department of Hydraulic Engineering
Delft, The Netherlands

Linda Walters
Department of Biology
University of Central Florida
Orlando, Florida

Jon J. Williams
Ports, Coastal & Offshore
Mott MacDonald
Croydon, United Kingdom

Kateryna M. Wowk
Harte Research Institute
Texas A&M University
Corpus Christi, Texas

David Yoskowitz
Harte Research Institute
Texas A&M University
Corpus Christi, Texas

Chela Zabin
University of California, Davis
Department of Environmental Science and Policy
Davis, California

and

HKV Consultancy
Lelystad, The Netherlands